
Elements

of

Programming

M.H. van Emden

Fourth Edition

Copyright c© 2007 – 2015 by M.H. van Emden

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the author.

Typeset in Tex; formatted in Latex. Figures in Omnigraffletm.
Cover design by Pink Sheep Media.

Published by Andromeda Research Associates, Ltd.,
a corporation registered in British Columbia, Canada.

First edition August 2007
Second edition August 2008
Third edition August 2009
Fourth edition December 2015

Contents

Preface ix

Acknowledgements xi

1 Introduction 1
1.1 Computers . 1
1.2 Programs . 2
1.3 Algorithms . 3
1.4 Languages . 8

I Familiarization 9

2 The first two programs 11
2.1 Prerequisites . 11
2.2 Output . 12
2.3 Evaluation of formulas . 16
2.4 Input . 18
2.5 Exercises . 19

3 A quick tour 21
3.1 State-oriented programming . 21
3.2 Assignment . 22
3.3 Sequencing . 23
3.4 Selection . 24
3.5 Functions . 25
3.6 Iteration . 29
3.7 Arrays . 31
3.8 Exercises . 34

II Base 43

4 Fundamental data types 45

iii

iv CONTENTS

4.1 Data in a computer . 45
4.2 Types . 45
4.3 Representation of values in programs 50
4.4 Type conversions . 53
4.5 Enumerations . 57
4.6 Miscellaneous topics concerning data types 58

5 Memory 61
5.1 The attributes of a variable . 61
5.2 Addresses . 63
5.3 Pointers . 63
5.4 Pointer errors . 65

6 Functions 69
6.1 Blocks . 69
6.2 Function definitions . 70
6.3 Function calls . 71
6.4 Functions as actual parameters . 77
6.5 Dangling pointers . 78
6.6 Exercises . 79

7 Expressions 83
7.1 The structure and value of an expression 83
7.2 Arithmetic operations . 85
7.3 Boolean operations . 86
7.4 Expressions and statements . 87
7.5 Increment and decrement operators 88
7.6 The assignment statement is an expression statement 88
7.7 Fused assignment operators . 89
7.8 Conditional expressions . 90
7.9 Operations on bit vectors . 92
7.10 Exercises . 95

8 Control 99
8.1 Compound statements . 99
8.2 Two-way decisions . 100
8.3 Multi-way decisions . 102
8.4 Iteration statements . 107
8.5 Greatest common divisor . 111
8.6 Example: Pythagorean triples . 112
8.7 The comma operator . 113
8.8 The function as control mechanism 114
8.9 Jump statements . 115
8.10 Exercises . 118

CONTENTS v

9 Arrays and strings 119
9.1 Arrays as sequences of variables . 119
9.2 Arrays as function parameters . 120
9.3 Strings . 121
9.4 Multi-dimensional arrays . 125
9.5 Exercises . 128

10 Structures and unions 137
10.1 An example of using structures . 137
10.2 Properties of structures . 140
10.3 Modeling objects with structures . 141
10.4 Unions . 142
10.5 Exercises . 148

11 Memory allocation 151
11.1 Automatic memory allocation . 153
11.2 Static memory allocation . 153
11.3 Dynamic memory allocation . 154

12 Multi-file programs 161
12.1 Why programs get big . 161
12.2 How programs get big . 161
12.3 Separate compilation . 162

III Algorithms 165

13 Search 167
13.1 Search in a randomly accessible sequence 167
13.2 Search in computed sequence . 168
13.3 Making a search space linear . 172
13.4 Exercises . 174

14 Conversion between numeral bases 175
14.1 Converting numerals to an arbitrary base 175
14.2 Making change . 176
14.3 Numerals in heterogeneous base . 178
14.4 Exercises . 179

15 Numerics 181
15.1 Numerical differentiation . 181
15.2 Integration by Monte Carlo simulation 183
15.3 Numerical integration by Simpson’s formula 185
15.4 Numerical Algebra . 187
15.5 Exercises . 194

vi CONTENTS

16 Sorting 197
16.1 Selection sort . 197
16.2 Quicksort . 197
16.3 Quicksort with an explicit stack . 201
16.4 Exercises . 204

17 The power of squaring and halving 209
17.1 Fast exponentiation . 209
17.2 Egyptian multiplication . 211
17.3 “Egyptian” quotient and remainder 213
17.4 Fractional powers . 214

IV Method 217

18 Top-down programming 219
18.1 Square root by guess-and-improve 219
18.2 Use of functions for top-down programming 220
18.3 Greatest common divisor . 222
18.4 Printing numerals . 222

19 Verification-driven programming 225
19.1 Binary Search . 226
19.2 Linear search . 229

20 Stepwise refinement 233
20.1 A pattern . 233
20.2 The eight-queens problem . 235
20.3 Sudoku . 237
20.4 Knight’s Tour . 239

A Table of operators 245

B Command-line parameters 249

C The C standard library 253
C.1 Overview of the C standard Library 254
C.2 Formatted I/O . 255
C.3 Internal I/O . 257
C.4 File I/O . 259
C.5 The Fisher-Yates shuffle . 261

D The preprocessor 263
D.1 Macros . 263
D.2 Phases of preprocessing . 266

E Difficult declarations 269

CONTENTS vii

F Glossary 273

viii CONTENTS

Preface
Many are the ways of getting into programming. One route is to start tinkering
with the html source code behind web pages. This can lead to learning about css,
then JavaScript and other convenience languages like Python and Ruby and then
perhaps tackling Java. Another route is to take a programming course in first year
of college. One might think that for such a course a convenience language is more
suitable than a bare-metal language like C.

But think again: it depends on where one is in college. Students in science,
engineering, and mathematics have selected themselves by having an above average
attention span and by having above-average analytical and problem-solving abilities.
Reading and writing your first programs in C is no more challenging than what you
encounter in a calculus or physics course. Plus, you get the benefit of starting
programming at the professional end.

Whatever route you are following, you will find this book useful.
In structuring this book I have been guided by certain similarities between flight

instruction and teaching programming. Flight instruction for novices begins with
a familiarization flight. Usually only a half-hour lesson, but sometimes repeated
for unusually panicky pupils. The familiarization lesson does not concentrate on
anything in particular and only aims at getting the novice used to being in the air.
To make this book suitable for novice programmers, its first part is familiarization.
It is dedicated to make the novice feel at home with simple programs. The book is
also useful to programmers with experience in other languages who want to learn
C. They will probably skip Part I, although Chapter 3 may be found useful.

Only after familiarization in flight instruction come lessons that concentrate on
specific topics, such as turns (climbing or descending), take-off, and landing. Part II
of this book, Base is the programming counterpart of this stage of instruction. Part
III gives a glimpse of the core of programming: Algorithms. After this, the reader
may become curious about what is known about problem solving, that crucial skill
needed for programming anything non-trivial. I have attempted to give some hints
in Part IV, Method.

Department of Computer Science
University of Victoria

December 2015

ix

x PREFACE

Acknowledgements

I had the good fortune to grow up in three distinctive programming cultures: the
Mathematical Centre in Amsterdam, the Lisp group in the IBM T.J. Watson Re-
search Center, and the Department of Machine Intelligence in the University of
Edinburgh. Though all of these entities have ceased to exist, I trust I am not the
only surviving beneficiary.

If this book is better than others, it is due to my choice of those who were, often
without knowing it, my teachers: H. Abelson, J. Bentley, W. Burge, R. Burstall,
M. Cheng, A. Colmerauer, T. Dekker, E. Dijkstra, D. Gries, C. Hoare, D. Hoffman,
N. Horspool, B. Kernighan, D. Knuth, R. O’Keefe, P. Plauger, R. Popplestone, F.
Roberts, G. Sussman, A. van Wijngaarden, N. Wirth.

I am grateful to the Department of Electrical and Computer Engineering at the
University of Victoria for insisting on returning from objects-first to functions-first;
to Sherwin Arnott of Pink Sheep Media, for his cover design and his enthusiastic
support of this project; to Jason Corless, Mark Halpern, Philip Kelly, Michael Levy,
Belaid Moa, Julian Subda, and Jim Uhl for expert and helpful comments.

Dan Hoffman deserves special mention. He combines deep expertise in the sub-
ject matter with the intense interest that an instructor has for the text selected for
his course. In addition he turned out to be an expert copy editor. I have gratefully
accepted many of his suggestions.

xi

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

Programming is part of information technology, which, in turn, is part of the larger
phenomenon of automation. We speak of “automation” whenever a machine is
used to replace the work of a human. Scholars have undoubtedly found examples
of automation in the renaissance, in the middle ages, in antiquity . . . Let’s skip
all that and use as natural starting point the time when automation first became
a problem: the early 19th century, when Ned Ludd and his gangs of cottagers
rampaged through the land to smash the spinning and weaving machines that had
deprived them of their livelihood.

Automation continued in spite of such opposition. Jacquard invented the pro-
grammable loom early in the 19th century. The pattern to be woven was determined
by instructions coded by punching holes in paper cards. Change the cards, and you
change the pattern. The programmer of those times translated an artist’s design
into a pattern of punchings.

1.1 Computers

In computation the counterparts of a machine loom were the mechanical calculators
invented in the 17th century independently by Schickard, Pascal, and Leibniz. With
such a machine you could add large numbers by merely turning a crank. Though
it took the brain work out of computation, you still had to turn the crank. And of
course, you still had to decide what numbers to add.

Performing a complex calculation is similar to operating a mechanical loom to
produce a desired pattern. Charles Babbage combined the idea of a mechanical
calculator with Jacquard’s. This resulted in 1834 in a design of a computer that
was both programmable and digital. Realization of the design proved too hard.
The automation of computation came to a standstill.

In manufacturing, however, automation continued. As important as automation
was the organization of manufacturing. Even before the time of Ned Ludd, Adam
Smith described an exquisitely organized mass production process for pins (the kind
you use by the dozen to hold pieces of cloth together). Henry Ford is famous for

1

2 CHAPTER 1. INTRODUCTION

applying the same principle on a larger scale in the early 20th century. By this
time, clerical work such as the processing of mail orders and bank transactions was
done on a large scale. This motivated the organization of clerical work along the
same principles as those of mass production in manufacturing.

During the second world war scientific computations reached such a scale that
the same organizational techniques were needed that had earlier been applied to the
processing of mail orders and bank transactions. The ideas of Babbage were revived.
This time, however, there was adequate funding for the development of such devices.
Moreover, electronics removed some of the obstacles that had prevented Babbage
from realizing his design.

After a bewildering variety of experimental designs there emerged in the 1950s
the electronic programmable digital computer. Although physically it has changed
beyond recognition since then, the main outline of its logical structure has remained
the same. It has a processor containing registers for storing data and circuits for
performing operations on these data. It has memory consisting of registers similar
to those in the processor. Memory can be used to store input and output data,
for intermediate results, and for the instructions that control the processor. The
collection of instructions in memory that control the processor is called a program.

This logical structure is shared by a wide range of physical systems. The range
includes a sliver of silicon the size of a fingernail that sells in quantity for less than
a dollar. It includes a laptop computer, as well as a workstation. It also includes
a million-dollar supercomputer containing many processors and memories that are
controlled by a single program.

1.2 Programs

A typical processor has a repertoire of dozens of instructions; often over a hundred.
Efficiency demands that an instruction performs an extremely simple operation. As
a result, programs consist of large numbers of instructions obtained by splitting up
the problem of interest in excruciating detail. During the first decade programming
was done this way.

Now that alternatives exist, it is seen as extremely expensive to have humans
write such programs. Instead, computers are usually programmed in a high-level
language. Examples of such languages are C, C++, Java, and C#. Many other
high-level languages exist. Thus “program” can mean a text in a high-level language
as well as the instructions in memory that control the processor.

In spite of the existence of high-level languages, computers still need to be
controlled by instructions. How do we cause a suitable sequence of instructions to
be written in the right memory locations so that the computer does what we want
it to do?

The main tool is the compiler, which translates a high-level language program
into instructions. As this translation is a large and complex task, the compiler is
itself a computer program. In the simplest set-up, the same computer is used for
running the compiler and for running the programs that you write.

1.3. ALGORITHMS 3

A high-level language makes a computer easier to program by hiding the intricate
hardware of the actual computer behind a simpler abstraction. Independently of
how memory is actually organized, a high-level language allows us to regard it as
a large collection of non-overlapping cells. These cells differ only in size, so they
can be laid out in any unoccupied part of memory. The size of the cell depends on
the amount of information a data item carries. The cell is smallest when the data
item only distinguishes between the 128 or 256 values of the character set in use.
The cell is larger when it can contain any whole number from 0 to 4, 294, 967, 295
(which is 232 − 1), to take as example a common range of values.

As the content of the cell can be changed, we speak of variables rather than
“memory cells”. A programming language allows us to set aside a certain part of
memory to be used as a collection of named variables, and to ignore the rest of
memory. As the content of the variables can change, we can only speak of any
particular content when the memory is in a certain state. Accordingly we refer to
the content of the variables collectively as the state.

We first study a simple kind of program that executes in the following stages:

1. Configure: arrange the state so that a suitable number of various types of
variables are available,

2. Initialize: cause the input data to become the contents of selected variables
(this way the input data become available for computation),

3. Compute: Change the state in one or more steps so that selected variables
contain the desired result, and

4. Output: cause the contents of the selected variables to be displayed on a
screen or printed on paper.

Programs of this simple kind are a good starting point for many practically
useful programs.

1.3 Algorithms

We have automation whenever a machine does work without needing to be con-
trolled by a human. The jar of jam on my breakfast table was filled, labeled, and
capped by such a machine. In early generations of such machines this automatic
behaviour was a consequence of the way in which the machine was put together.
It was not possible to point to any particular part responsible for its behaviour.
Changing the machine’s behaviour required extensive rebuilding.

Nowadays it is more likely that we can point to a changeable part of the machine
that causes its behaviour. Change this part, and the machine changes its behaviour.
Likely as not, that part is a computer chip with a program stored in its memory.

This new style of implementing automation has made it easier to design ma-
chinery because the automatic behaviour is created by writing a program for a

4 CHAPTER 1. INTRODUCTION

computer. By implementing automation in this way, programming has become the
essence of automation. All we need to do to achieve automation is to say precisely
what we want done. This is the purpose of the program.

Explaining in writing how to do something is not a novelty brought on by the
computer age. Since times immemorial, alchemists, witches, mothers, grandmoth-
ers, and Cordon Blue chefs have passed on their knowledge by writing recipes.
Knitting patterns are also examples of pioneering attempts at precise written in-
structions.

Writing a program is deceptively like writing a recipe or knitting pattern. The
purpose is to make clear the complete sequence of precisely defined steps to be
followed. The similarity is deceptive because recipes and knitting patterns are
executed by humans. True enough, these humans may curse you, the author, for
forgetting a step or for thinking something obvious that turns out not to be so, but
by and large they muddle through and often end up with something that the author
would acknowledge as being close to the intended result.

Not so with programs. The machine that executes the program does not share
with the author of the program any notion of what the intended result is supposed
to be, nor does it have a repertoire of basic skills with which to improvise, should
the need arise. The machine attempts to execute the instruction stated if it is
unambiguously recognized as an exact member of its precisely circumscribed reper-
toire. If this instruction is not appropriate to the state it is in, the machine will halt
without damage if we are lucky and might be destroyed otherwise. If the instruction
is not recognized, then the machine aborts program execution in the way that the
designer thought might cause least damage. Therefore programs for machines need
to be written more precisely than instructions for humans.

So far we have only talked about programs. What about algorithms? A good
cookbook may contain a thousand recipes, but that is still only a negligible propor-
tion of everything one could concoct in the kitchen. A good cookbook is good not
only because of the accuracy of the recipes, but also because of its selection of what
is worth cooking or baking. So it is with programs. Programming expertise includes
a collection of particularly worthwhile methods for doing things that a computer
can do. There are many ways in which a program can be written to benefit from
such a method. An algorithm is that which all such programs have in common.

An algorithm is a method of doing a task that can be so precisely described that
it can control a machine with the result that the machine performs the task without
need for supervision. The description of the algorithm is not the algorithm: the
same algorithm can be described in different programming languages and in different
ways in the same language.

1.3.1 Binary search: an example of an algorithm

To get a better idea of what we are talking about, let us look at an algorithm. An
algorithm is a method for performing a task. As example of a task, consider the
following. You have a stack of cards. Each card has one word written on it. The
cards are ordered so that the words are in alphabetic order with the alphabetically

1.3. ALGORITHMS 5

earliest on top. The task is to find out whether a given word occurs on a card in
the stack.

This is a simplified version of a common data processing task. For example,
the words could be the names of customers, while the customer’s record could be
written on the back of each card. As example of a method to perform this task
when there may be many cards on the stack, we take binary search.

A first try For binary search we proceed as follows.

Look at the word on the card halfway down the stack. If this is the
word we are looking for, then we are done. Otherwise, the word we are
looking at is alphabetically before or after the word we are looking for.
In the first case we continue with the bottom part of the stack; otherwise
with the top part.

This description would be enough to instruct a human who has not yet figured
out the trick. But it is inadequate as an algorithm. The problematic aspects can be
summarized as: incomplete and not well-defined, and each of these in several ways.

The description of the method is incomplete. The stack that we are working on
gets smaller at every step. Surely, at some point “halfway down the stack” stops
making sense. Another way in which the description is incomplete shows up when
we ask what happens if the word is not on any of the cards. Whether or not this is
a likely event, it must be accounted for. And it may well be a likely event: if the
business is growing, it often happens that the word we are looking for is the name
of a new customer. In such a situation it would be helpful if the method tells us
where to insert a new card.

The description that we gave of the method is not well-defined in several ways.
For example, what do some of these phrases mean? Take “look at . . . halfway down
the stack”. Or “continue with the bottom part”. Part of the problem is that even
the description of the task is problematic: “to find out whether a word occurs on
a card in the stack”. Suppose a human assistant would take us at our word and
hand the stack back to us while enunciating the word “yes”. Though we got what
we asked for, we would be more than a little annoyed at the implied “. . . and if
you want that card, go find it yourself”. It is annoying because the assistant has
done the work of finding the card and then throws away the information gained by
handing us back the whole pile in its original state. And even if the word does not
occur in the stack, it may be useful to know where it would have occurred if it did.
For example, that would be the place to insert a new card with that word.

Another try at binary search These shortcomings motivate improvements to
both the task and algorithm descriptions. First the task.

Input There are two items of input: (1) A word called “input word”, and (2) a
stack of cards called “input stack”. Each card has one word written on it.
The cards are ordered so that the words are in alphabetic order with the
alphabetically earliest on top. There is at least one card in the input stack.

6 CHAPTER 1. INTRODUCTION

Output We define the insertion point as the lowest card whose word is not alpha-
betically after the input word. The desired output is the input stack with a
slip of paper visibly inserted immediately above the insertion point. If there
is no insertion point; that is, if the input word is alphabetically before the top
card, then the desired output is the input stack with the slip of paper on top.

The slip of paper ensures that we don’t throw away the work done in our search
for the input word. It also takes care of both eventualities: that the input word
is or is not in the stack. The legalistic-sounding definition of the insertion point is
engineered to be applicable whether or not there is a card with the input word in
the input stack.

With this improved task description in hand we attempt a description of a
method to perform the task.

Step 1 If the input word is alphabetically before the word on the top card, then
halt, returning the input stack with the slip on top of the top card.

Step 2 If the word is on the bottom card or comes after it, then insert the slip
below the bottom card, and halt.

Step 3 [We have not halted, so the input word is the word on the top card or is
after it, or is before the word on the bottom card, if it is in the stack.] Insert
a slip below the top card and a slip on top of the bottom card.

Step 4 [We have not halted, so we are holding a stack of cards with two slips in
it.] If there is no card between the slips, then remove one and halt.

Step 5 [We have not halted, so there is at least one card between the slips, the
input word is on or after the word of the card on top of the top slip and it is
before the word on the card under the bottom slip.] Inspect the card halfway
between the slips. If the word on this card is after the input word, then place
the bottom slip on top of this card; otherwise, place the top slip on top of this
card. Go to Step 4.

Though it’s a lot more verbose than our first attempt, it is still not totally precise.
(What’s “the card halfway between the slips” when there are two, or indeed any
even number?) One might despair at the prospect of an even more legalistic and
convoluted description. Despair not. See Program 13.2, which is short, neat, and
absolutely precise. Such is the joy of programming.

1.3.2 Characteristics of algorithms

Our work on the binary search example serves to highlight the characteristics of
algorithms. An algorithm is something like a procedure, a method, or a recipe.
It is more systematic than these in that an algorithm must have the following
characteristics: finiteness, input, output, definiteness, and effectiveness.

1.3. ALGORITHMS 7

Finiteness Execution of an algorithm must terminate. This does not hold for all
programs. For example, a program that controls a telephone exchange is designed
to continue operation without ever stopping. To terminate would be an error. Such
a program does not define an algorithm. But many parts of the intentionally non-
terminating program do execute algorithms that need to terminate to ensure correct
operation of the program of which they are part.

Input An algorithm typically acts on data obtained from input. A program for
computing the decimal digits 3.1415926535 . . . of the number π does not qualify as
an algorithm because it does not have input, and because it does not terminate.
But modify it slightly to take as input the number of digits required, and it does
qualify if it terminates after the specified number of digits.

Output An algorithm has a result, which needs to be communicated to the outside
world by means of output.

Definiteness An algorithm specifies how to perform a task by means of a well-
defined set of operations. Each of these operations is really a task in itself, which
may need to be done by executing another algorithm. For example, in binary search
we specify as operation “If the input word is alphabetically after the word”. This
assumes we know how to determine of two words whether they are the same and, if
not, to determine which one is alphabetically earlier. Implicitly we assume that the
words are finite. In that case, it is safe to assume that it is possible to determine
this in a finite amount of time. It happens to require another algorithm. It is an
important one, and student programmers don’t always get it right.

At another point, the binary search algorithm specifies “Inspect the card halfway
between the slips” if the number of cards between the slips is more than one. This
specification lacks in definiteness. If the number of cards between the slips is odd,
then indeed there is exactly one card answering this description. But if there is an
even number, then there are two cards with equal claim to being halfway, or none,
depending on how pedantic you want to be. In fact the algorithm only works if we
take the upper one of these. This is at least one way in which our improved version
of binary search is still defective.

Effectiveness Suppose one would include in an algorithm an operation of the
form “If there is a solution to such and such a system of equations, then do this
else do that.” Whether such an operation is permissible in an algorithm depends
on the system of equations.

1.3.3 Need for an algorithmic language

We saw that our second attempt at a binary search algorithm, though better than
the first, was still not successful. The difficulties suggest that English or any other
natural language is not suitable for anything beyond an intuitive approximation to
an algorithm. We need an algorithmic language.

8 CHAPTER 1. INTRODUCTION

1.4 Languages

An example of an algorithmic language is the programming language in which the
program is written that makes the computer do what we want. Thus, C, C++,
Java, and C# are examples of algorithmic languages as well as being programming
languages. But such languages are far from ideal as algorithmic languages. To make
them into tools for getting the best performance out of a computer, any program
expressing the algorithm is cluttered to some degree with extraneous detail. For
example, an algorithmic language might only have two types of number, integer
and fractional. Integers in C can be specified as being signed or not, and come in
up to three different sizes; six combinations in all. Fractional numbers come in two
different sizes. All this may help to enhance efficiency, but introduces extraneous
detail into algorithm specification.

This, then is the Programmer’s Dilemma: before starting to write a program,
one needs to know what the algorithm is; to know the algorithm, one should have
it written in an algorithmic language. Some authors advocate the use of a language
that is purely algorithmic in the sense that it is only intended to specify algorithms.
Because such a purely algorithmic language does not need to control a computer,
specifications written in it need not contain any extraneous detail.

This suggests a way out of the Programmer’s Dilemma: use a purely algorithmic
language to specify the algorithm; then translate the specification to a programming
language. A problem with this approach is that there is much disagreement about
the conceptual basis of a purely algorithmic language. Some advocate that it be
based on the mathematical concept of function. Others disagree, arguing that
formal logic should be the fundament. Both sides on this issue agree that the
concept of state is too close to a computer to sufficiently distinguish an algorithmic
language from a programming language. For others, states and state transitions are
the essence of algorithms.

This stand-off has existed for decades. It is not surprising that programming
languages have evolved to become a hybrid. One can choose a programming style
that emphasizes the clarity or brevity with which algorithms are expressed. Or
one can write the program to optimize execution speed or memory use. These four
requirements, clarity, brevity, speed, and memory use, usually conflict.

By emphasizing clarity, if necessary at the expense of brevity, speed, and memory
use, one can use a programming language such as C, C++, Java, or C# in such a
way that it is a reasonable approximation to a purely algorithmic language. In this
book we do not introduce a purely algorithmic language, but use C. In this way we
get programs that are both readable and executable.

An advantage of this approach is that you learn the elements of programming at
the same time as learning a programming language that is widely used. Moreover,
C has influenced the design of Java and, via Java, the design of C#. C has even
become a part of C++. Though languages such as Javascript, Perl, and Python are
referred to as “scripting languages”, they are programming languages as well. The
elements of programming that you learn here are also useful in learning to program
in these languages.

Part I

Familiarization

9

Chapter 2

The first two programs

Programming is one of the things you learn best by doing. I will get you started as
soon as possible running your own programs and experimenting with them so you
can get them to do interesting things.

Whatever one sets out to do, something else needs to be done first. So it is in
computing. However much we would now like the computer to compute something,
we need to be able to get the computer to communicate first. Computation happens
in the processor, which only communicates with memory. We need to be able write
our data into memory (input) and to read selected parts of memory (output).

2.1 Prerequisites

Programming environment I recommend that you execute the example pro-
grams in this book on a computer and that you try variations of them. To do this,
and to do the exercises, you need very little in the way of programming environ-
ment. All I assume is that you have a screen, a keyboard, and a computer with a
C implementation.

Input is entered on a keyboard. Output is displayed in a window on the screen.
Depending on system particulars, either the whole screen is dedicated to this win-
dow, or it is one of several windows. You need a text editor for writing new programs
and for modifying existing ones.

The development cycle When we talk about a “program” in this book, we
almost always mean a source program: a text written in the C programming lan-
guage. When considering the details of using such a program, we have to distinguish
three forms in which a program can exist: source program, object program, and
executable.

Part of the home work or lab work consists of going through the following cycle:

1. Create or revise the source program with the editor.

11

12 CHAPTER 2. THE FIRST TWO PROGRAMS

2. Compile the source program to obtain the object program.

3. Link the object program to other object programs and load the result to
obtain an executable program.

4. Run the executable.

Some or all of these steps can usually be combined into a single command-line entry
or mouse click.

2.2 Output

Most of this book is concerned with what needs to happen inside the computer for
it to be able to do something useful. However important these internal operations
are, we should not lose sight of the fact that they have to be based on data (so there
has to be input) and that we need to get a result in some form (so there has to be
output).

In trying to find a program simple enough to serve as first example, we can
leave out just about everything, but not output. Therefore the first program only
performs output. In the next few pages I explain how this is done by Program 2.1∗.

00 // A program to demonstrate output.
01 #include <stdio.h>
02 #include <math.h>
03
04 int main() {
05 printf("Good morning, everyone!\n");
06 printf("This is a number: %f\n", 3.1415926535);
07 printf("%d\n", 2+2);
08 printf("%s\n", "2+2");
09 double x;
10 printf("%f\n", x);
11 x = 1.0;
12 printf("%f\n", x);
13 printf("%f; this should be pi\n", 4*atan(x));
14 return 0;
15 }

Figure 2.1: A program with output only.

∗When the text refers to “Program” x.y, please look up Figure x.y.

2.2. OUTPUT 13

Line 00 The first line in the program in Program 2.1 is a comment. This is so
because in a line containing in succession the two slash symbols

//

the slashes themselves and all text (if any) on the same line after the slashes is
ignored by the compiler.

In general, comments are used to make programs readable. We should always
keep in mind that the intended audience of source code is not only a computer, but
also a human, you or someone else, who will need to debug or revise the code†. Sur-
prisingly perhaps, writing new code is the exception in the programming profession.
Most programmers’ work consists in modifying existing programs. It is here that
comments, carefully formulated and thoughtfully placed, are of crucial importance.

Line 01 The C programming language only provides core capabilities. Many
essential facilities are not provided by the language itself, but by collections of
programs called libraries. The C language standard includes a Standard Library.

As the Standard Library is large, one needs to specify which part one needs. In
this program we need the part that deals with input and output. Accordingly, we
write the directive #include <stdio.h>. Doing so gives the program access to the
facilities in the part of the standard library for input and output.

Line 02 This line contains the directive to include the part of the standard li-
brary for mathematical functions such as square root, logarithms, the exponential
functions, trigonometrical functions, and others. stdio.h and math.h are names of
header files. These define the required parts of the library.

Line 03 A blank line has been inserted to improve readability.

Line 04 Programs consist mainly of statements: text that instructs the imple-
mentation to do something. In support of that there are directives and definitions
that do not cause anything to happen, but serve to clarify the statements. Large
programs have so many statements that they need to be grouped into units called
functions. Functions have names and often deliver data.

When a program with many functions starts to execute, which one gets to go
first? This is the function named main. Every program has to have one, and only
one, such function. In this program the function main starts at line 04. The keyword
int indicates that the type of the data returned by this function is integer, that is,
a whole number. Some functions do not return data, and then one writes instead
void.

†Sometimes the code is not read by a computer at all. John Archibald Wheeler, the physicist,
is said to have kept a cardboard box on his desk with COMPUTER written on it. Whenever he found
something difficult to understand, he would write it as a computer program. Often that was all
he needed, and then he put the program in the box and forgot about it.

14 CHAPTER 2. THE FIRST TWO PROGRAMS

Braces The structure of the function main is highlighted in the following lines:

int main()
{ // brace opening the body of "main"
...
} // closing brace

Another commonly used layout saves a line by writing instead:

int main() {
...
}

The matching braces enclose the body of the function, which is the part of the
program that is executed when the function is called.

Line 05 Lines 05 through 14 contain statements. They constitute the body of the
function main. Before considering line 05 as a whole, let us look at the statement

printf("Good morning, everyone!");

The form of the statement is that of a function call: it starts with the name of the
function, printf, followed by one or more expressions between parentheses, followed
by a semicolon. The name printf is short for “print formatted”. The “formatted”
refers to facilities to control the format of numerals and their placement on the
page.

Between the parentheses is the actual parameter of the call to printf. It is
a string, which is the text enclosed by double quotes. The result of executing
the statement on this line is that the characters of the string, minus the enclosing
quotes, appear in more or less the same form on whatever output medium is in
force, usually a screen or paper.

Consider now the statement

printf("Good morning, everyone!\n");

The last two characters \n of the string are not output in the form in which they
occur in the string. Together they are an end-of-line marker. They ensure that a
new line is started for any output that may follow. The backslash \ is an escape
character. It indicates that something special is going on: it and the following
character jointly stand for some output effect other than printing a character.

Line 06 The call to printf on this line has two actual parameters. The name of
a function specifies a job to be done, in this case to print something. The actual
parameters in a function call give needed information about this job, in this case
what to print. Multiple actual parameters are separated by commas.

In printf("This is a number: %f\n", 3.1415926535); the % symbol in first
actual parameters has in common with the character \ that it is a special character

2.2. OUTPUT 15

that does not appear as such in the printed result, but serves to modify the following
character to produce a special effect. In the case of %f the special effect is to
substitute the second actual parameter in its place and to print it in a certain
format. The f specifies that format; it is the one that is appropriate for fractional
numbers. The overall effect of the statement is to print:

3.141593

As a default, the number has been rounded to seven significant digits. How to effect
rounding to fewer or more decimals will be explained in Section C.2.

Line 07 The effect of executing this line is the output

4

This example has been included to show that the printed string need not contain
anything more than the item to be substituted. Also, the expression in the sec-
ond actual parameter is “evaluated”, so that you see the value 4 rather than the
expression 2+2 that has this value.

The item to be substituted in the string in the first actual parameter is %d, where
the d indicates that the format to be used is one suitable for integers (as decimal
numeral; other choices are %x for hexadecimal and %o for octal, to be introduced
later).

Line 08 This line has been included on purpose to have some similarity to the
line above. However, now the second actual parameter is not the expression 2+2,
but it is the string "2+2", which is the sequence of the three characters between
quotes. It is this sequence of three characters that is substituted for the %s in the
first actual parameter.

Line 09 This line introduces a variable. It has a name, which is x. It has a type,
which is double. Every variable has a value. The value of x is restricted to be a
fractional number, and this is indicated by the specified type ‡.

Line 10 As every variable has a value, let us find out what is the value of x by
printing it. As x has been created without specifying a value, the implementer of
the C language is not responsible for giving the variable any particular value. It
may differ from system to system and may, on some systems, even differ every time
the program is run.

Line 11 The variable x gets a value by its presence in the left-hand side of an
assignment statement. On the right-hand side is an expression giving the value that
the variable is getting as a result of executing this statement.

Line 12 We check the value of x again.
‡double comes from ‘double-length floating-point”.

16 CHAPTER 2. THE FIRST TWO PROGRAMS

Line 13 atan is a function provided by the mathematics part of the standard
library. It is short for “arc tangent”.

Line 14 The function has done all that we want it to do. It is also supposed to
return a value. In the case of main the value should indicate whether any exceptional
conditions arose during its execution. If so, then the value returned is 1; otherwise
0. The C implementation used here allows this statement to be omitted in the latter
case, which we will often do from now on.

Line 15 This line contains the brace that closes the body of function main. It
ends the function definition and the program.

To summarize we give the output of Program 2.1 below.

Good morning, everyone!
This is a number: 3.141593
4
2+2
0.000000
1.000000
3.141593; this should be pi

2.3 Evaluation of formulas

One of the earliest computer applications was to perform numerical calculations. In
fact, up to the middle of the twentieth century “computer” meant a person doing
numerical calculations with pencil and paper supplemented by a slide rule, books
of tables, or a mechanical calculator.

The earliest computer programs evaluated mathematical formulas in an indi-
rect way, as a sequence of instructions for transfer between memory and processor
registers or to perform an operation on specified processor registers. This way a
formula that can be understood at a glance on a printed page was transformed into
a sizeable chunk of code that can be deciphered, but not really read.

The earliest programming languages were motivated by the desire to program as
large a part of a numerical computation as possible directly by means of a formula
written as much as possible as it is printed in a book or as it is written on a
blackboard. The programming language C has this facility as well. In fact, in
line 13 of Program 2.1 you may have noticed 4*atan(x) as the counterpart of the
conventional algebraic notation

4 arctan(x).

The rules for translating conventional algebraic expressions to C are complex
in detail. But most programmers don’t refer to the detail: they get by with the
general idea behind the translation, which I will explain here with an example. The
example will be used in the next program, which also demonstrates how a program
can perform input.

2.3. EVALUATION OF FORMULAS 17

Newton’s law Let us compute the force due to gravity, according to Newton’s
law, between two spherical bodies with homogeneously distributed masses m1 and
m2 with centres at distance r. The law can be expressed by the formula

G
m1m2

r2
(2.1)

The program prompts the user for m1, m2, and r, then inputs these values. The
program outputs the result of evaluating the formula.

Progress has been made towards the ideal of having computers read traditional
mathematical notation. But it is difficult to get a computer to process traditional
notation in its full complexity. One difficulty in a formula like (2.1) is the fact that
multiplication is implicit rather than explicit; it is implied by two variables being
written next to each other. Another difficulty arises from the two-dimensional
layout of the formula. For convenient processing by the compiler, it is important
that a program consists of linear character sequences, so it’s not a good idea to
have a horizontal bar separating the dividend above from the divisor below. For
the same reason, in computer programs one does not square a number by an implied
operation with the exponent written a bit higher like in r2.

But even staying within conventional notation, we can avoid the features that
are awkward for compilers. We can place the symbols in a linear sequence and write
all operations explicitly:

G× (m1 ×m2)/(r × r).

This translates in a straightforward fashion to an expression

G*(m1*m2)/(r*r)

that is acceptable to the C compiler. This is what you find in line 11 of Program 2.2.

00 #include <stdio.h>
01
02 int main() {
03 const double G = 6.673e-11;
04 printf("Input the first mass in kilograms:\n");
05 double m1; scanf("%lf", &m1);
06 printf("Input the other mass in kilograms:\n");
07 double m2; scanf("%lf", &m2);
08 printf("Input distance in metres:\n");
09 double r; scanf("%lf", &r);
10 printf("The force of gravitational attraction is ");
11 printf("%lf newtons.\n", G*(m1*m2)/(r*r));
12 }

Figure 2.2: A program to compute values of Newton’s formula for the force due to
gravitation.

18 CHAPTER 2. THE FIRST TWO PROGRAMS

For G, the constant of gravity, we use a constant rather than a variable. Hence
line 03

const double G = 6.673e-11;

A constant is like a variable, except that it cannot occur in the left-hand side of
an assignment statement. The only way to give it a value is by including in its
definition an initialization, as was done here.

Fractional numerical values are written as a decimal fraction, possibly scaled
by a power of ten. As the value of the gravitational constant is 6.673 × 10−11,
we write 6.673e-11§ in the program. We could have written 0.6673e-10 or
0.00000000006673 among many other equivalent possibilities.

Caveat This is not the recommended way to do small computation jobs! The
handiest way to evaluate a mathematical formula is to use a pocket calculator, cell
phone, or equivalent. These can handle formulas that are more complex than

G
m1m2

r2

When calculator facilities run out, a spreadsheet program takes over. It is only
for custom computations that require branches and iterations that one turns to a
full-fledged programming language such as FORTRAN, MATLAB, or C.

2.4 Input

We saw how a program can communicate the result of its computation to a user.
This aspect of its operation is called “output”. When a program executes a state-
ment to receive data for its computation, it is said to perform “input”.

Suppose we want to use Program 2.2 to get an idea of the force of gravitational
attraction on the scale of objects that are big enough to make the force measurable,
yet small enough to be handled in a laboratory. For example, let the two objects
be leaden spheres with a mass of 400 kilograms each. These are small enough to be
placed with their centres at a distance of 0.5 metres.

Consider the following code snippet:

double x = 1.0;
printf("%f\n", x);

The variable x gets its value as a result of executing the initialization in the first
line. If we want to obtain that value by means of input from the user, then we can
write instead:

double x;
scanf("%f\n", &x);

§The e comes from “exponent”.

2.5. EXERCISES 19

The library function scanf is the input counterpart of printf. The call to scanf
causes execution of the program to pause. If the user then enters an acceptable
representation of a double value, then execution resumes with x having that value.
Note the similarity between the lines

printf("%f\n", x);
scanf("%f\n", &x);

but also the difference. The call to printf does not change the value of x; the
call to scanf does. To ensure that execution of scanf can change this value, the
ampersand & is needed. In a later chapter the meaning of this symbol is explained.

With this explanation of scanf in place, you will see that a possible combination
of input and output resulting from execution of Program 2.2 is:

Input the first mass in kilograms:
400

Input the other mass in kilograms:
400

Input distance in metres:
0.5

The force of gravitational attraction is 0.000043 newtons.

Here the indented lines are input by the user who is running the program. You
will recognize the other lines as output from the program.

2.5 Exercises

2.5.1 Outputting quotes

In Program 2.1 we used the simplest kind of string. It can be defined by the rule:

Write a string as any sequence of letters, digits, or spaces enclosed by,
but not including, the double quote (").

But suppose we want to output something like

He cried: "Stop!"

We can’t do that with this simple rule, which only works for strings that don’t
include any quotes. This problem is addressed by using an escape character: if we
want to include a quote in a string between quotes, then we write a backslash (\)
in front of it to ensure it is interpreted as part of the string. Thus the above output
can be obtained by

printf("He cried: \"Stop!\"\n");

This exercise is to write a program that produces the following output verbatim
character by character and distributed over the two lines as shown:

She came in and closed the door quietly behind her.
He lowered his newspaper: "Hi honey, what’s up?"

20 CHAPTER 2. THE FIRST TWO PROGRAMS

2.5.2 Other uses of the escape symbol

The escape character can be also used to convert into a string any text that extends
over more than one line. This is done by including \n, which ensures that the rest
of the string, if any, continues on the beginning of the next line. If there is no rest
of the string, then future output, if any, continues on the next line. This future
output may itself start with \n.

To output spaces until the next tab stop, insert \t into the string. To output \,
insert \\ into the string.

This exercise is to write a program that produces the following output verbatim
character by character and distributed over the two lines as shown:

To advance output to the next tab stop, include \t.
To advance to a new line, include \n.
To output a backslash, include \\.

2.5.3 Checking the mathematics library

It’s no surprise that mundane machines can do no better than to approximate
transcendental objects like the number π. But even some mundane things like 1/3
can only be printed with an error. So we can’t expect the computations by the
mathematics library to be exact.

Write print statements to get an impression of the accuracy of the mathematics
library. Do this by printing sqrt(0.5)*sqrt(0.5). Also for tan(atan(0.5)) and
atan(tan(0.5)). Similarly for sin with asin, cos with acos, and exp with log,

2.5.4 Your favourite formula

Modify Program 2.2 to compute your favourite formula. In case you don’t have
a favourite formula, consider Heron’s formula for the area A of a triangle where
the sides have lengths a, b, and c : A =

√
s(s− a)(s− b)(s− c), where s, the

semicircumference, is (a+ b+ c)/2.

Chapter 3

A quick tour

In this chapter you learn by example. It presents small, self-contained programs
that have been compiled and run as shown. I explain each of these programs just
far enough that you understand what it does and what part is responsible for what.
I can only keep the explanations short by keeping them superficial. You will see
what they do, but not yet know why. By making changes to the examples you can
already do interesting things.

In the chapters following the Quick Tour, I switch to the opposite strategy: I
concentrate on specialized aspects of programming and treat each of them in depth.

3.1 State-oriented programming

Recall from Section 1.2 that processors work by changing the state of memory.
Thus state, and the change of it, is basic to the operation of computers. There
are several approaches to programming. They differ in their treatment of state.
Functional programming and logic programming simplify many tasks by making
state invisible. However, state cannot always be ignored. Functional and logic
programming avoid applications where it is essential to take state into account.
The approach to programming that gives state a central place can be called state-
oriented programming. Widely used languages such as Python, C, C++, Java, and
C# are state-oriented in the sense of making state the focus of computation.

A computer includes a processor that performs operations on data in memory
under control of a program. One can tell that the processor has done something
when it leaves the memory in a different state. One characterizes the program by
the change of state it causes. As memory consists of a collection of variables, the
state of the memory is determined by the content of each variable. As described in
section 1.2, this suggests a form of state-oriented programming, which proceeds in
the following successive stages:

1. Configure: create the state with a suitable collection of variables,

21

22 CHAPTER 3. A QUICK TOUR

2. Initialize: cause the input data to become the contents of designated vari-
ables (this way the input data become available for computation; in simple
cases this stage is merged with Configure),

3. Compute: change the state in one or more steps so that designated variables
contain the desired result, and

4. Output: cause the contents of these variables to be printed.

The first stage is described in terms of definitions; the other stages in terms
of statements. The definitions configure the state by creating a suitable collection
of variables. Execution of a statement causes change of state, or causes output to
happen.

3.2 Assignment

The first example follows the Configure, Initialize, Compute, Output pattern. The
Compute stage consists of assignment statements. I discuss the four stages in order
as they occur in Program 3.1.

0 #include<stdio.h>
1
2 int main() {
3 int x,y,z;
4 printf("Enter numbers x and y.\n");
5 scanf("%d %d", &x, &y);
6 z = x; x = y; y = z;
7 printf("x: %d; y: %d; z: %d\n", x, y, z);
8 }

Interaction (in-
put indented):

Enter numbers x and y.
1 2

x: 2; y: 1; z: 1

Figure 3.1: Swap, interchange the values of two variables.

Configure In the line 3 the state is configured by creating the necessary variables.
The keyword int means two things: (1) variables are created and (2) the variables
are suitable for storing whole numbers (the keyword int is short for “integer”). We
say that the names of the variables are x, y, and z, respectively, and that their type
is int. Creating a variable means that an area of memory is allocated of a size
suitable for data of type int. The semicolon “;” terminates the definition.

The line could have been written as three separate definitions:

int x; int y; int z;

The shorthand shown is the usual version.

3.3. SEQUENCING 23

Initialize In line 4, variables x and y are initialized from input. The role of z will
become clear as we proceed.

Compute By “compute” we understand change of state. This does not always
involve “computation” in the usual sense. The state changes in lines 5–7 are de-
signed to interchange the values of x and y, an operation that is sometimes needed
as part of a computation.

At some stage in the interchange, we need the assignment statement

x = y;

Let us dissect this statement. On the left of the assignment symbol = is a variable.
On the right is an expression; in this case the expression consists of the single
variable y. The effect of the statement is to ensure that the variable on the left-
hand side obtains as value the value of the expression on the right-hand side.

Let us now see how we could use assignment statements to exchange the values
of two variables. A variable always has one value: neither more, nor fewer. This
fact has important consequences. That there cannot be fewer than one value means
that a variable always has a value, even when none has been assigned to it. That a
variable never has more than one value implies that after x = y; the variable x has
the value of y. The previous value of x has gone forever, unless this value has been
saved into another variable. Exchange of the values cannot happen by somehow
magically executing simultaneously x = y; and y = x;. The role of the variable z
is to save the original value of x in time so that it can be assigned to y after the
original value of y has been assigned to x.

Output In line 8, x, y, and z are printed. Note that z contains the original value
of x.

3.3 Sequencing

In the remainder of the Quick Tour, we visit the various control structures that are
available in C. By “control” one means the mechanisms that determine the order
in which statements are executed.

The control structures can be grouped under the following headings: sequencing,
selection, iteration, and function call.

Sequencing merely means that statements in the body of a function are executed
in the same order as we read a text in English: within a line from left to right, while
lines are processed from above to below. This is of course of crucial importance in
understanding the programs we have discussed so far. I assumed that the reader
would take it for granted. Now it’s official.

24 CHAPTER 3. A QUICK TOUR

3.4 Selection

The examples so far consisted of straight-line code: every statement is executed
once, and executed in the order as written. We now consider code in which the
next statement to be executed is not always the next in the program text. Instead,
execution may continue at a statement that is selected on the basis of the value of
a condition. Statements that allow us to do that are selection statements. These
include if-statements and if-else-statements.

Let us first consider if-statements. These are statements of the form

if (C) S

where C is a condition and S is a statement, including its terminating semicolon.
Such an if-statement executes S or it leaves the state unchanged, depending on the
condition C.

A condition is an expression that has as value an integer. If C evaluates to any
value other than 0 (typically 1), then S is executed. If C evaluates to 0, then the
if-statement leaves the state unchanged.

Another type of selection statement is the if-else statement.

if (C) S0 else S1

where C is a condition and S0 and S1 are statements, including their terminating
semicolons. If C evaluates to a non-zero value, then the if-else statement executes
S0 but not S1. If the condition evaluates to zero, then it is the other way around.

3.4.1 Comparing two numbers

As a first example, let us consider how to write a program that reads two integers,
compares them, and prints the result of the comparison.

Comparing two integers can yield three outcomes: the first is greater, the second
is greater, or the two are equal. This suggests three if-statements, one for each of
these contingencies. As the three conditions cover all possibilities and are mutually
exclusive, one and only one of the three output statements is executed.

The conditions in the if-statements compare the integers with comparison op-
erators. These include > with the meaning “greater than”. The other comparison
operators are >= (greater or equal), == (equal), != (not equal), < (less), and <= (less
or equal).

See Program 3.2, Compare.

3.4.2 Sorting three numbers

It is often required as part of a computation that a sequence of items needs to be
rearranged so that it becomes sorted in increasing or decreasing order. While a
typical sorting program works for sequences of any length, it is sometimes useful to
have a program fragment that sorts a short sequence of fixed length. This suggests

3.5. FUNCTIONS 25

00 #include <stdio.h>
01
02 int main() {
03 printf("Input two numbers\n");
04 int a, b;
05 scanf("%d %d", &a, &b);
06 if (a < b)
07 printf("first smaller\n");
08 if (a > b)
09 printf("first larger\n");
10 if (a == b)
11 printf("equal\n");
12 }

Sample interaction
(input indented):

Input two numbers
1 1

equal

Figure 3.2: Compare, use the if-statement to compare two numbers.

writing a program that prompts the user to input three integers and that prints
them in non-decreasing order. A useful building block for such a program is “two-
sort”: code that ensures that two variables are in sorted order, interchanging them
if necessary. By performing two-sort on suitably selected pairs of variables, any
number of variables can be sorted.

To nail down these thoughts, it is useful to write them down in a stylized kind of
English that describes the steps to be followed more explicitly than would happen in
a description that conforms to the conventional constraints of grammar and style.
We call this stylized English pseudo-code. An algorithm in pseudo-code consists
of instructions for the computer possibly interspersed with text in square brackets
containing comments for the human reader.

place the three input numbers in the three variables a, b, and c
two-sort a and b
two-sort b and c

[c is the greatest of the three]
two-sort a and b

[a, b, and c are sorted]

See Program 3.3, Three-sort.

3.5 Functions

An important aspect of writing a program is to decide what is to be done, and when
it is to be done. In straight-line code, execution of statements is from left to right
on the same line of program text and from top to bottom beyond a single line. We

26 CHAPTER 3. A QUICK TOUR

00 #include <stdio.h>
01
02 int main() {
03 printf("Input three integers\n");
04 int a, b, c; scanf("%d %d %d", &a, &b, &c);
05
06 int x;
07 // two-sort a and b
08 if (a > b) { x = a; a = b; b = x; }
09 // two-sort b and c
10 if (b > c) { x = b; b = c; c = x; }
11 // two-sort a and b
12 if (a > b) { x = a; a = b; b = x; }
13
14 printf("The sorted input: %d %d %d\n", a, b, c);
15 }

Figure 3.3: Three-sort, sort three items with three two-sorts.

have seen structures for selection as departures from this order. The next step is
the possibility of packaging : to allow the programmer to name a piece of code and
to allow statements to use that name to execute that code independently of what
part of the program has just been executed.

Such a piece of code is called a function; the statement causing its execution is a
function call. Function calls themselves can be scheduled by selection and iteration,
and the code of a function can be organized by selection, iteration, and can itself
contain function calls.

Let’s review what we have seen of functions, so far. In Program 2.1, line 13,
we saw atan(x). This is a call to a function named atan (short for “arc tangent”)
that takes an angle (i.e. a number) as actual parameter and computes the number
that is the arc tangent of that angle. The computed number replaces the call in the
expression 4*atan(x).

Program 2.1 contains several calls to the function printf. The purpose of the
function is to produce an effect on the output medium. Neither atan and printf
are defined in the program calling these functions. They are defined in a library
that is made available to any program making these calls by including the line

#include <stdio.h>

in the case of printf and by

#include <math.h>

in the case of atan.

3.5. FUNCTIONS 27

Let us look in Program 3.2 for code suitable for packaging as a function. The
code can be divided into (a) a core that performs the comparisons and (b) peripheral
statements for input and output. We make the separation formal by introducing a
function to contain this core. What qualifies the core for this treatment is that it
is a unit that achieves a succinctly definable goal. One can imagine that execution
of this code is needed in several places in a program. Better than having to repeat
the code is to package it once and for all and write a function call in place of the
code.

To implement this idea, C allows a function to be defined in one place and to be
called in any number of places in the program. The definition names the function
and lists the code to be executed when the function is called. This code is the
body of the function. As one typically wants the body to be executed with different
values of selected variables, these variables are made into formal parameters of the
function body. The function call typically contains actual parameters, which are
the values to be substituted for the formal parameters before execution of the body.
The value computed by the function call replaces the function call.

Let us look at Program 3.4, where the various features of function definition and
function call can be seen. In line 14 and 16 you see two occurrences of the function
call intcmp(p,q). The name intcmp refers to the opening (line 02) of the function
definition that extends from lines 02 through 09. The body of that function starts
with the opening brace on line 02 and ends with the closing brace in line 08.

Lines 03, 04 and 05 are the specification of the function. It should be included
in every definition of a function that is of more than ephemeral interest.

Line 08 contains a comment: any text following /* and before the next occur-
rence of */ is a comment in the sense of being ignored by the compiler. In this
case the usual form, which is the text following // to the end of the line, is not
convenient.

The precondition should give the information necessary to ensure that calls to
the function execute without mishaps and achieve the stated purpose.

The body is intended to be executed with different values of a and b. These are
the formal parameters of intcmp, a fact indicated by the parameter list between
parentheses in the function opening in line 02. The keyword return causes ter-
mination of the execution of the body and it specifies the value “returned” by the
function, which is the value to be substituted for the function call.

The function call intcmp(p,q) specifies not only the name of the function be-
ing called, but also has a list of actual parameters consisting of the values to be
substituted for the formal parameters in the function definition.

The function main We have been using a function definition from the beginning;
every program contains a function definition. In Program 2.1 this function definition
extends over the lines 04 through 15. It has the form

int main() { ... return 0;}

The name of the function is main. The int preceding the name indicates that
the function returns an integer result. The parentheses following the name enclose

28 CHAPTER 3. A QUICK TOUR

00 #include <stdio.h>
01
02 int intcmp(int a, int b) {
03 // Purpose: return -1, 0, or 1 according to whether a is less
04 // than, equal to, or greater than b.
05 // Preconditions: None
06 if (a < b) return -1;
07 if (a > b) return 1;
08 /* a == b */ return 0;
09 }
10
11 int main() {
12 printf("Input two numbers\n");
13 int p, q; scanf("%d %d", &p, &q);
14 if (intcmp(p,q) < 0)
15 printf("first smaller\n");
16 else if (intcmp(p,q) > 0)
17 printf("first larger\n");
18 else printf("equal\n");
19 }

Figure 3.4: Compare Function, Program 3.2 reorganized by the use of a function.

the function’s formal parameters. Even when there are none (as in this case) the
parentheses have to be there. The braces begin and terminate the body of the
function. Between the braces we find the code that is executed as a result of a call
to the function. The statement return 0; specifies that 0 is to be returned as value
in response to any call to main.

Function main() is exceptional in several ways:

1. In every program one function of this name has to be defined.

2. The function main is not called in code written by the programmer. The
programmer can cause any piece of code to be executed by wrapping it up in
a function definition, and then calling that function. For this to happen the
program has to be in the process of execution. The programmer cannot cause
this process to start; the operating system has to do it and it does it in the
form of a call to the function designated as main by the programmer.

3. main can be defined with either two formal parameters or none. I mostly use
the latter option.

4. If the end of the body is reached without encountering a return statement,
then return 0 is executed before leaving the body.

3.6. ITERATION 29

Functions serve purposes other than the one of breaking up large pieces of code.
Functions make it easier to re-use code that is applicable in situations other than
the one for which it was first conceived. Moreover, functions make it easier to reason
about the effect of code.

3.6 Iteration

If restricted to sequencing and selection, the program resulting from a page of code
would be finished executing in a matter of microseconds. To get anything useful
done in a program of reasonable size, one typically uses at least one of the control
structures for iteration, which is the repetition of the same piece of code, but with
varying data. Some iteration statements have the form of a while statement:

while (C) S

where C, the condition, is an integer expression, and S, the body, is a statement.
If C is zero, execution of the while statement has no effect. Otherwise, its

execution consists of repeatedly executing S as long as C is not zero. One can
think of the while statement as having a goal, and that this goal is to make C
evaluate to zero.

If neither the execution of S, nor the evaluation of C results in C ever becoming
zero, then execution of the while statement continues forever.

3.6.1 Conversion of fuel consumption rates

Consider Program 3.5, MPG, that prints the following table that converts from
miles per gallon to litres per 100 km for some values that cover many cars:

mpg litres/100 km
15 15.68
20 11.76
25 9.41
30 7.84
35 6.72

See Program 3.5, MPG.
In the iteration in MPG the print statement is the one to be repeated. Between

repetitions something changes in the repeated statement. Here it is the value of
mpg, the controlling variable. The iteration uses while in a stereotyped pattern:
initialize the controlling variable, test for termination, compute, and increment the
controlling variable.

C recognizes the utility of this pattern by providing the for statement. With
this control structure, the loop is written like this:

double mpg;
for (mpg = 15; mpg <= 40; mpg = mpg+5) {

printf("%2d\t%5.2lf\n", mpg, conv/mpg);
}

30 CHAPTER 3. A QUICK TOUR

00 #include <stdio.h>
01
02 int main() {
03 const double LPG = 3.785; // litres per U.S. gallon
04 const double KPM = 1.609; // km per mile
05 double conv // conversion factor
06 = 1 * // mile per gallon
07 KPM * // km per gallon
08 (1/LPG); // km per litre
09 conv = (1/conv) * // litre per km
10 100; // litre per 100 km
11 printf("mpg\tl per 100 km\n\n");
12 double mpg = 15;
13 while (mpg <= 35) {
14 printf("%2.2lf\t%2.2lf\n", mpg, conv/mpg);
15 mpg = mpg + 5;
16 }
17 }

Figure 3.5: MPG, print a table to convert from miles per gallon to litres per 100
kilometres.

Often it is abbreviated to

for (double mpg = 15; mpg <= 40; mpg += 5)
printf("%2d\t%5.2lf\n", mpg, conv/mpg);

when mpg is only needed in the body of the for statement. Because the statement
to be repeated consists of a single statement, it makes no difference that the braces
have been dropped. Finally, mpg = mpg+5 is often shortened to mpg += 5.

The advantage of a for statement over a while is that the three items that char-
acterize iterations—initialization, test for completion, and update of the controlling
variable—have a fixed place. It is a common error to forget one of these.

3.6.2 Using integer divide and remainder

When an integer is divided by an integer, an integer results. Thus 3/2 gives 1.
Consequently, (3/2) ∗ 2 does not get you the 3 back. But we do have that (n/m) ∗
m + n%m = n, where n and m are integers and n%m is the remainder when n
is divided by m. See Program 3.6, Div-Mod, for integer divide and remainder in
action.

Its output is

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0

3.7. ARRAYS 31

When you read the 25 columns, you see the first 25 non-negative integers displayed
as base-6 numerals.

0 #include <stdio.h>
1
2 int main() {
3 for (int n = 0; n < 25; n++) printf("%d ", n/6);
4 printf("\n");
5 for (int n = 0; n < 25; n++) printf("%d ", n%6);
6 printf("\n");
7 }

Figure 3.6: Div-Mod, compare results of integer divide and remainder.

3.6.3 Compound interest

What difference does it make when a bank converts an account from an interest
rate of r percent per year to a daily interest of r/365 compounded daily? And, if
that’s not too expensive for the bank, why not exploit the spectacular marketing
impact of compounding by the second?

Once upon a time such questions would be answered with a table of logarithms;
nowadays with a spreadsheet. Either way, the various ways of answering them pro-
vide a useful demonstration of programming techniques. Here is a straightforward,
though inefficient way.

The effect of applying an interest rate of r % to an amount a is to multiply
a by 1 + r/100. To compound the interest for n periods, one repeats n times the
application of the interest rate of r/n %; that is, one mulitplies a by (1+r/(100n))n.
Apparently we need a function, say, power, that computes arbitrarily high integer
powers.

See Program 3.7, Extreme Compounding.
A sample interaction with Program 3.7 is (input indented):

Enter amount:
1000

Enter annual interest rate in percent:
2

With interest over a year: 1020.000000
With daily compounding: 1020.200781
With compounding by the second: 1020.201339

3.7 Arrays

Suppose we are recording the output of a sensor at time instants that are one
millisecond apart. Do we have to define thousands of variables to store these data?

32 CHAPTER 3. A QUICK TOUR

00 #include <stdio.h>
01
02 double power(double b, int e) {
03 // Purpose: return b to the power e.
04 // Preconditions: b > 0 and e >= 0.
05 double p = 1.0;
06 for (int i = 0; i < e; i++) p *= b;
07 return p;
08 }
09 int main() {
10 printf("Enter amount:\n");
11 double amount; scanf("%lf", &amount);
12 printf("Enter annual interest rate in percent:\n");
13 double rate; scanf("%lf", &rate);
14 printf("With interest over a year: %lf\n",
15 amount*power((1.0 + rate/100), 1)
16);
17 printf("With daily compounding: %lf\n",
18 amount*power((1.0 + rate/(100*365)), 365)
19);
20 double numSec = 60*60*24*365; // number of seconds in a year
21 printf("With compounding by the second: %lf\n",
22 amount*power((1.0 + rate/(100*numSec)), numSec)
23);
24 }

Figure 3.7: Extreme Compounding, compound interest at extreme frequencies.

Or suppose we want to verify that April 16 is day 106 of a non-leap year. To be
able to do this for arbitrary dates, we need lengths of months. Do we have to define
twelve int variables to store this information?

As these examples remind us, a computer application is often concerned with a
sequence of data rather than with a single datum. To make it easier to work with
data that are structured as a sequence, C has arrays. For every kind of number,
there exists an array of elements all of that kind of number. For example, when we
define

int a[10];

the result is an array a of ten integer elements. The fact that a is not an integer,
but an array of integers is specified by the brackets. Each of the elements of the
array can be treated as an integer variable. They are accessed as a[0], a[1], ...,
a[9], ten elements in all. The integers between square brackets are the indexes of
the elements.

3.7. ARRAYS 33

It is a property of C that, wherever an integer is allowed, we can have an integer
expression. For example, if x has value 3 and y has value 7, then a[y-x] is allowed
and is the same array element as a[4]. If i, a[i], and b[i] are in the index
ranges of a and b, then a[b[i]] and b[a[i]] are defined. See Program 3.8, Array
Indexing.

00 #include <stdio.h>
01
02 int main() {
03 int a[] = {2,3,4,1,6,5,0,8,9,7};
04 printf("%d ", a[9]);
05 printf("%d ", a[a[9]]);
06 printf("%d ", a[a[a[9]]]);
07 printf("%d ", a[a[a[a[9]]]]);
08
09 int b[] = {6,3,0,1,2,5,4,9,7,8};
10 for (int i = 0; i < 10; i++) printf("%d ", a[b[i]]);
11 printf("\n");
12 for (int i = 0; i < 10; i++) printf("%d ", b[a[i]]);
13 printf("\n");
14 }

Output:

7 8 9 7 8
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

Figure 3.8: Array Indexing. Compare lines 10 and 12 and compare their outputs.

3.7.1 A common calculation

Since ancient Egypt and Mesopotamia the most common computation has been the
addition of a list of numbers. It is not too late to honour this tradition. This is
the right place because the array is a natural way to store a list of numbers. See
Program 3.9, Array Sum. Its output is:

Sum of month lengths: 365

34 CHAPTER 3. A QUICK TOUR

00 #include <stdio.h>
01
02 int sum(int a[], int n) {
03 int s = 0;
04 for (int i = 0; i < n; i++) s = s+a[i];
05 return s;
06 }
07 int main() {
08 int monLen[] = {31,28,31,30,31,30,31,31,30,31,30,31};
09 printf("Sum of month lengths: %d\n", sum(monLen, 12));
10 }

Figure 3.9: Array Sum, compute the sum of the elements of an array.

3.8 Exercises

3.8.1 Effect of multiple assignments

Before executing the code fragment

x = x+y; y = x-y; x = x-y;

the values of x, y, and z are x0, y0, z0, respectively. Express the values of these
variables after execution in terms of the initial values.

3.8.2 Four-sort

Write a program that reads four numbers and prints them in sorted order. Consider
using two-sorts.

3.8.3 Rank in sorted series

Write a program that reads four numbers n0, n1, n2 and n3 that are in increasing
order. It then reads an arbitrary number, say x. The program prints how many of
n0, n1, n2 and n3 are smaller than x.

3.8.4 Leibniz’s formula

A formula invented by Leibniz is:

π

8
=
∞∑

n=0

1
(4n+ 1)(4n+ 3)

. (3.1)

Use the first 1000 terms of the infinite sum to obtain an approximation of π.

3.8. EXERCISES 35

3.8.5 Wallis’s formula

A formula invented by Wallis is:

π

2
=

2× 2× 4× 4× 6× 6× . . .
1× 3× 3× 5× 5× 7× . . .

(3.2)

Use the first 1000 factors of the infinite product to obtain an approximation of π.

3.8.6 Area of triangle

Write and use the function:

double area(double a, double b, double c) {
//Purpose: return the area of the triangle with sides of lengths
// a, b, c if such a triangle exists; return -1 otherwise.
//Preconditions: a, b, and c nonnegative.
// Your code here.
}

See Exercise 2.5.4.

3.8.7 GCD and LCM

Write and use the functions:

int gcd(int x, int y) {
//Purpose: return the greatest common divisor of x and y.
//Preconditions: x and y nonnegative.
//Your code here.
}
int lcm(int x, int y) {
//Purpose: return the least common multiple of x and y.
//Preconditions: x and y nonnegative such that the
//product of x and y is representable as int.
//Your code here.
}

3.8.8 Fibonacci numbers

The Fibonacci numbers f0, f1, f2, f3, . . . are defined as f0 = 0, f1 = 1, and fi+2 =
fi+1 + fi for i = 0, 1, 2, Write and use the function:

int fibonacci(int n) {
//Purpose: return the n-th Fibonacci number.
//Preconditions: 0 <= n < N where N is such that the N-th Fibonacci
//number is the smallest that is not representable as int.
//Your code here.
}

36 CHAPTER 3. A QUICK TOUR

3.8.9 Polynomial evaluation

Input: a fractional number x, an array a of fractional numbers, and an integer n,
the length of a.
Output: a fractional number equal to

a0 + x(a1 + x(a2 + . . .+ x(an−2 + xan−1) . . .).

3.8.10 Continued fraction

A continued fraction is an expression that is determined by integers

a0, a1, a2, . . . , an−1,

called convergents. For n = 5, the expression is:

a0 +
1

a1 +
1

a2 +
1

a3 +
1
a4

Write and use a function:

double contFrac(double a[], int n) {
//Purpose: return the value of the continued fraction
//with convergents in a[0..n-1].
//Preconditions: n positive.
//Your code here.
}

An interesting case has a equal to 3, 7, 15, 1, 292 and n = 5.

3.8.11 Collatz sequence

The Collatz sequence is defined for any initial positive integer n by the following
algorithm:

read n, a positive integer
while n 6= 1

if n is odd then n← 3n+ 1
else n← n/2

The curious phenomenon is that the sequence seems to terminate for every initial
n.

For some starting values of n we get quite short sequences. An example is 48,
as one can easily check. But starting with 47 gives quite a cliff-hanger:

3.8. EXERCISES 37

47 142 71 214 107 322 161 484 242 121 364 182
91 274 137 412 206 103 310 155 466 233 700 350
175 526 263 790 395 1186 593 1780 890 445 1336
668 334 167 502 251 754 377 1132 566 283 850
425 1276 638 319 958 479 1438 719 2158 1079
3238 1619 4858 2429 7288 3644 1822 911 2734 1367
4102 2051 6154 3077 9232 4616 2308 1154 577 1732
866 433 1300 650 325 976 488 244 122 61 184 92
46 23 70 35 106 53 160 80 40 20 10 5 16 8 4
2 1

Write a program that prints the length and the maximum of the Collatz sequence
starting at i, for integers i from p up to and including q.

3.8.12 Odometer

An odometer consists of a row of counters, each of which counts from 0 to 9. From
the right to the left, the counters count units, tens, hundreds, and so on. Every
time a unit (a mile or a kilometer) is counted, the units counter is incremented.
However, if this counter already shows 9, then it turns back to 0, and the counter
to the left is incremented. Again, if this is already at 9, then the same story repeats
with its left-hand neighbour, as long as there is one.

Write a program that simulates a four-digit odometer by displaying (not on
paper) on successive lines the reading after each change.

3.8.13 Seven Questions

Write a program that implements the guessing game illustrated below. Inputs are
indented.

38 CHAPTER 3. A QUICK TOUR

Choose a positive integer X less than 100.
If you truthfully answer my questions,
then I will you tell what X is.

Is X less than 50 ?
If so, then enter 1; otherwise 0.

1
Is X less than 25 ?
If so, then enter 1; otherwise 0.

0
Is X less than 37 ?
If so, then enter 1; otherwise 0.

0
Is X less than 43 ?
If so, then enter 1; otherwise 0.

1
Is X less than 40 ?
If so, then enter 1; otherwise 0.

0
Is X less than 41 ?
If so, then enter 1; otherwise 0.

0
Is X less than 42 ?
If so, then enter 1; otherwise 0.

1
X is 41

The program should not ask more than seven questions to determine the value,
whatever X. How many questions for identifying any integer up to a thousand? Up
to a million?

3.8.14 Finite differences

Before computers an important aid to computation consisted of books containing
tables of various commonly used functions. The compilers of such volumes in-
vented several tricks for decreasing the amount of computation needed. In this
section we consider the table of third powers of positive integers: the sequence
1, 8, 27, 64, 125, . . .

If asked to compute 63 out of context, one would need to perform two multiplica-
tions. But if one knows enough of the preceding third powers, then multiplications
can be avoided. The key is the technique of finite differences. Consider the tableau

0 1 8 27 64 125 cubes
1 7 19 37 61 first differences

6 12 18 24 second differences
6 6 6 third differences are constant

3.8. EXERCISES 39

The differences are the differences between successive entries in the line above.
Differences between the function values are “first” differences. Differences between
first differences are second differences, and so on. It is easily seen with a bit of
calculus that the n-th differences for n-th powers of integers are constant and equal
to n!.

The table makers’ trick is the following. To get the next cube, one starts by
observing that the next entry in the bottom line is 6. That gives 30 for the next
entry on the line above and so on until one reaches the top line with 6+24+61+125
equals 216 = 63.

This exercise is to modify the following program to avoid multiplications.

#include <stdio.h>

void table(int n) {
// Purpose: print cubes of 0..n.
// Precondition: n cubed at most largest representable integer.
for (int i = 0; i <= n; i++) printf("%d\n", i*i*i);

}
int main() {
printf("Input a positive integer.\n");
int n; scanf("%d", &n); table(n);

}

3.8.15 Point-to-point distance

Write and use the function:

double dist(double co_ord[]) {
//Purpose: return the distance between two points whose
//x and y coordinates are in co_ord[0..3].
//Preconditions: co_ord has size 4.
//Your code here.
}

3.8.16 Area of triangle

Write and use a function:

double area(double co_ord[]) {
//Purpose: return the area of a triangle whose vertices have
//x and y coordinates given in co_ord[0..5].
//Preconditions: co_ord has size 6.
//Your code here.
}

See 3.8.15 and 3.8.6.

40 CHAPTER 3. A QUICK TOUR

3.8.17 Print Sudoku puzzle

Program 3.10 stores a Sudoku puzzle in an array. Add the definition of function
print so that the puzzle in printed as shown.

00 #include <stdio.h>
01
02 void print(int s[], int n);
03
04 int main() {
05 const int n = 3; // blocksize
06 int s[] = {
07 0,0,0, 7,0,0, 2,1,0,
08 0,0,0, 0,5,9, 0,4,3,
09 0,0,0, 0,0,8, 9,0,0,
10
11 8,0,2, 0,0,0, 0,0,0,
12 6,5,0, 0,1,0, 0,2,4,
13 0,0,0, 0,0,0, 5,0,7,
14
15 0,0,7, 2,0,0, 0,0,0,
16 9,1,0, 5,8,0, 0,0,0,
17 0,8,4, 0,0,6, 0,0,0
18 }; // size 81
19 print(s,n);
20 }

Desired output:

0 0 0	7 0 0	2 1 0
0 0 0	0 5 9	0 4 3
0 0 0	0 0 8	9 0 0

8 0 2	0 0 0	0 0 0
6 5 0	0 1 0	0 2 4
0 0 0	0 0 0	5 0 7

0 0 7	2 0 0	0 0 0
9 1 0	5 8 0	0 0 0
0 8 4	0 0 6	0 0 0

Figure 3.10: Exercise: add function definition so that the output is as shown.

3.8.18 Sort an array

Write and use a function:

void sort(double x[], int n) {
// Purpose: sort x[0..n-1]
// Preconditions: n >= 0 and x[0..n-1] is allocated.

Exclusive use of two-sorts is acceptable.

3.8.19 Find median of sample

The median of a sample x0, . . . , xn−1 is defined as the middle element of the sorted
version if there is a single middle element and the mean of the two middle elements
otherwise. Write and use a function:

3.8. EXERCISES 41

double median(double x[], int n) {
// Purpose: to return the median of x[0..n-1]
// Preconditions: n >= 0 and x[0..n-1] allocated.
// Your code here.
}

42 CHAPTER 3. A QUICK TOUR

Part II

Base

43

Chapter 4

Fundamental data types

Computers do their work by operating on data. Much of a programmer’s work con-
sists in designing operations and data types that are just right for the application.
These programmer-designed operations and data types are directly or indirectly
defined in terms of the fundamental ones that are built into the programming lan-
guage. In this chapter we survey the most commonly used data types that are built
into C.

4.1 Data in a computer

In their first decade, computers were only used for numerical applications. These
data were the fractional numbers that occur in scientific and engineering appli-
cations and the integers that dominate financial and administrative applications.
Nowadays computers are often used as media machines. Much of their memories is
allocated to storage for images, sounds, and text. Yet, when one looks closely, the
data in memory still consists of numbers. The fundamental data types are either
manifestly numeric or are numbers in disguise.

If we want to speak of data in a computer other than in a general way, then
we need to speak of the values that variables of a programming language can have.
Each item of information processed by a computer (including images and sounds) is
processed as the value of some variable of the programming language used to write
the code.

4.2 Types

The values that variables can assume are classified into types. There are several
reasons for this. In the first place, the mathematical model of the world that the
program manipulates has variables whose types are different in a mathematical
sense. Some variables represent continuously changing quantities. Other variables
count discrete items. A variable can also represent a character of text, a colour, the

45

46 CHAPTER 4. FUNDAMENTAL DATA TYPES

Y-coordinate of a pixel, or a truth value of logic. Some programming errors can be
traced to violations of the world model due to assigning a value of the wrong type
to a variable, or due to calling a function with an actual parameter of a wrong type.
When the programming language distinguishes types in a sufficiently rigorous way,
the compiler can detect such type errors. Such languages are said to be strongly
typed. C sits towards the strongly-typed end in the spectrum of programming
languages.

Another reason for classifying the values of variables into types is that some
mathematically defined types have infinitely many values. Therefore they cannot
all be represented in computer memory. Approximations or restrictions in range
are necessary. Depending on the application, we may want to spend more or fewer
computer resources on making the approximation accurate or on widening the range.

4.2.1 Integers

A non-negative integer i with 0 ≤ i < 2n can be represented as a bit vector that is
the base-2 numeral bn−1 . . . b1b0 for i:

i = bn−12n−1 + . . .+ b121 + b020.

This is the representation of the type unsigned int. As a consequence of this
representation, the range of the unsigned integer type represented as an n-bit vector
has 0 as least and 2n − 1 as greatest value. All integers within this range are
represented exactly.

If we want to use the n bits bn−1 . . . b1b0 to represent an int, then about half of
these bit vectors have to be used for negative values. An obvious representation is
called “signed magnitude”, which consists of a bit for the sign with the remaining
bits dedicated to a representation of the absolute value. After an initial period of
experimentation, computer designers have settled on the following representation,
called two’s complement.

Let us first look at an example of the two’s complement representation of values
of type unsigned int and int. For ease of presentation, we show in Table 4.1 the
imaginary case where only three bits are available for representing an integer; that
is, n = 3.

000 001 010 011 100 101 110 111
unsigned 0 1 2 3 4 5 6 7
signed 0 +1 +2 +3 −4 −3 −2 −1
signed magnitude +0 +1 +2 +3 −0 −1 −2 −3

Table 4.1: Three-bit representations for integers.

In the general case of two’s complement representation, an integer i such that

4.2. TYPES 47

0 ≤ i < 2n−1 is represented by a 0 followed by bn−2 . . . b1b0, n bits in all, such that

i = bn−22n−2 + . . .+ b121 + b020.

An integer i such that −2n−1 ≤ i < 0 is represented by a 1 followed by bn−2 . . . b1b0,
n bits in all, such that

i = bn−22n−2 + . . .+ b121 + b020 − 2n−1.

These two cases can be summarized by saying that an integer i such that −2n−1 ≤
i < 2n−1 is represented by bn−1 . . . b1b0, n bits in all, such that

i = bn−1(−2n−1) + bn−22n−2 + . . .+ b121 + b020.

As a consequence of this representation, the range of the int type, represented
as an n-bit vector, has −2n−1 as least and 2n−1 − 1 as greatest value. All integers
within this range are represented exactly.

C has the integral types short and long, which allow the possibility of integers
using, respectively, fewer and more bits than int. Thus we could have 16 bits for
short, 32 bits for int, and 64 bits for long. These sizes are not mandated by C;
they can vary between machines. But short cannot be longer than int, nor can
int be longer than long. As is the case with int, short and long are signed. The
unsigned variants are unsigned short and unsigned long.

Integers are used for different purposes. In a program one might use an integer
variable to count, for example, the number of bytes in a file containing music. The
maximum value of such a counter had better be large. If four bytes are allocated
for the counter, then the maximum value for an unsigned integer is 232 − 1, which
would be sufficient for up to a four gigabyte file. That is a lot. But using only
three bytes would give a maximum value of 224 − 1, only enough for files up to 16
megabytes. So four bytes is a reasonable size for a general-purpose integer, though
one can imagine that it is not large enough for some purposes.

On the other hand if we used four-byte integers to record the amplitudes in a
music file, then we would waste a lot of space. Using only two bytes would shrink
the file by a factor of two, yet allow 216 different values for the amplitudes. This
illustrates the need for integers of different sizes. However, unless there is lack of
space, it is wise to use int as default.

The following table shows the range of values for the various types of integer on
a representative system.

4.2.2 Characters

C includes the character types char, signed char, and unsigned char. All three
are classified under the “integral types”, such as short and int. For the programs
in this book, we only need the character type char.

The type char occupies at least eight bits, that is, one byte, according to the
definition of C. The ASCII character set, which is adequate for representing C source

48 CHAPTER 4. FUNDAMENTAL DATA TYPES

type minimum value maximum value
unsigned short 0 65,535
unsigned 0 4,294,967,295
unsigned long 0 18,446,744,073,709,551,615
short -32,768 32,767
int -2,147,483,648 2,147,483,647
long int -9,223,372,036,854,775,808 9,223,372,036,854,775,807

Table 4.2: Range of values of integer types on a representative system.

code and English text, contains the codes 0 through 127. So it only needs seven
bits. As a result a char value in C has, typically, one spare bit.

In some implementations of C, char variables contain codes of an “extended
ASCII” character set. Such character sets are not ASCII standard, but are character
sets of which the codes 0 through 127 coincide with the ASCII codes where the other
codes are used for characters needed for languages other than English.

Unicode has been created for languages that need more than 256 codes. It has
216 codes. To accommodate such languages, C has the type wchar_t. It is natural
to assume that variables of type wchar_t contain Unicode values. This is usually
the case in C programs, but it is not mandated by the standard.

4.2.3 Booleans

We saw that integers are represented in the most compact way possible: n bits are
used to represent 2n different values. The Boolean type has only two values, usually
called “true” and “false”. The most compact representation would have a single
bit.

However, computers do not handle single bits efficiently. In memory, bits are
grouped in bytes, which would suggest using a whole byte to represent a Boolean.
The natural unit for the processor is the word, which usually consists of multiple
bytes. Hence it is not uncommon to find a Boolean represented as four bytes because
words are four bytes.

The Boolean type is denoted by the keyword bool; the truth values by the
keywords true and false. In C, truth values are represented by an integral type,
where 0 means false and any other value means true.

The Boolean type is one of the more recent additions to C. Strictly speaking, the
keyword is _Bool and neither true nor false are keywords. However, the library
stdbool.h defines bool as an alternative to _Bool defines true as 1, and false as
0. Thus the inclusion of the bool type into C has been rather half-hearted. To avoid
the hassle of #include stdbool.h we use 0 for false and some nonzero integer
for true. A nice compromise between convenience and good logic is to use, instead
of a literal, a Boolean expression that is manifestly true or false, like 1 == 1 and 0
== 1.

4.2. TYPES 49

4.2.4 Floating-point numbers

In Section 2.3 we encountered fractional numbers. As examples we gave as alter-
native representations for the constant of gravity: 0.00000000006673, 6.673e-11,
and 0.6673e-10. We read the latter as 6.673× 10−11 and 0.6673× 10−10, respec-
tively. This is the scientific notation familiar outside of programming. We can place
the decimal point wherever we want by making a suitable adjustment to the expo-
nent. Because of this freedom in placing the decimal point, the notation is known
in computing as floating-point format. Thus we speak of floating-point numbers as
a data type.

The beauty of the floating-point format is that we can also use fractions to
represent big numbers. This allows us to write any positive number, however small
or large, as w × 10E where E is an integer (positive or negative) and w is between
one and ten. Such standardization is useful for representing numbers in computer
memory.

But, as computer memory consists of bits, the most natural representation is in
base 2 rather than 10. This suggests that we make use of the fact that any number,
however small or large, can be represented as w × 2E where E is an integer and w
is between one and two.

To nail things down more specifically, floating-point format represents any non-
zero number x as

x = s× (1 + b12−1 + · · ·+ bk2−k)× 2E

where s is 1 or −1 (so we can represent negative numbers), k is some fixed positive
integer and E can be any integer between a negative and a positive bound.

How many bits does this representation require? The two possibilities for s can
be represented in one bit, the sign bit. We need k bits for b1, . . . , bk. These are
called the significand. Finally, we need a fixed number of bits for E, the exponent
of the floating-point format. Fixing k limits the precision with which a number can
be represented. Fixing the number of bits for E limits the range: that is, how close
x can come to 0 and how far away.

C does not mandate that floating-point numbers are represented in any particu-
lar way. Many processors implement the method outlined above. C provides a data
type float. In addition, there is double, which is allocated at least as much space
as float. Finally, there is long double, which is allocated at least as much space
as double.

For float, many processors implement the single-length format of the IEEE
standard for floating-point arithmetic. This implies a k equal to 23 and 8 bits
allocated for E. The sign bit brings up the total number of bits to 32. The smallest
and largest values that E can take are −126 and +127, respectively. This leaves
two special values for the 8 bits reserved for E. These are used to ensure that a
floating-point number can become 0. Other special values are provided for, including
positive and negative infinity.

If a processor implements the IEEE standard for float, then it is likely to im-
plement double according the IEEE standard’s double-length format. This implies

50 CHAPTER 4. FUNDAMENTAL DATA TYPES

k equal to 52 and 11 bits for E. With the sign bit this adds up to eight bytes. This
format gives greater precision and a larger range. In many implementations of C,
long double is the same as double.

Both float and double allow us to represent extremely small and extremely
large numbers; the latter allowing more extreme extremes. How do we choose
between these? Experience shows that even innocent-looking computations can
suffer from lack of precision. Accordingly many experienced programmers abide by
the rule to use double for computation and to reserve float for situations where
large amounts of numerical data needs to be stored and storage capacity is a concern.

This explains that you often see double as a de facto default.

4.3 Representation of values in programs

How do variables get their values? When the value comes from input, the program
only shows the variable, not the value. A variable can also get its value by copying
it from another one, as can happen in an assignment statement such as x = y;
and in an initializing definition of the form int x = y;. But we can also specify
the value itself in the program text, as in x = 2;. The item on the right of the
assignment symbol is a literal. In this section we explain how to write literals of
various types.

4.3.1 Integer literals

For its integer literals, C follows to some extent the conventional notation for decimal
numerals. For example, any sequence of decimal digits not starting with a zero has
its conventional meaning. Some literals for integers do start with a zero. These are
octal or hexadecimal numerals. The reason for these can be explained as follows.

Sometimes it is necessary to specify an integer as a bit vector rather than as a
decimal literal. We obtain such a bit vector as the representation of the integer as
a numeral to base two. However, writing an int as a numeral in base two requires
one to write a sequence of 32 zeros and ones. Even if one is willing to put up with
the inconvenience of writing such a long sequence, errors are likely to be introduced.
It is therefore better to collect the binary digits of a bit vector in groups. Three
and four are handy sizes for such groups.

We get the effect of grouping the bits in threes by writing a nonnegative integer
n in base 8. It is a sequence of integers, each of which is an octal digit: one of the
integers 0 through 7. As these integers only require a single decimal digit, one can
use the first 8 decimal digits as octal digits. This is the octal representation of n,
as shown in Table 4.3.

Similarly, if we write a nonnegative integer n in base 16, we get a sequence of
digits that are the possible remainders on division by 16. This is the hexadecimal
representation of n. The first 10 hexadecimal digits coincide with the decimal
digits. For the remaining ones we use a, b, c, d, e, and f for the hexadecimal
digits represented by the decimal numerals 10, . . . , 15, respectively. The upper-case
versions A, B, C, D, E, and F are also allowed. See Table 4.3.

4.3. REPRESENTATION OF VALUES IN PROGRAMS 51

octal: 0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

--

0 1 2 3 4 5 6 7
0000 0001 0010 0011 0100 0101 0110 0111

hexadecimal:
8 9 a b c d e f
1000 1001 1010 1011 1100 1101 1110 1111

Table 4.3: The octal and hexadecimal digits and their binary representations.

The octal digits are a subset of the decimal ones, which are, in turn, a subset
of the hexadecimal digits. As a consequence, one cannot tell from a sequence of
octal digits what number it denotes: 123 could mean 1 × 82 + 2 × 81 + 3 × 80, or
1× 102 + 2× 101 + 3× 100, or 1× 162 + 2× 161 + 3× 160. The following rule for
integer literals resolves this ambiguity.

• If the literal starts with a nonzero decimal digit, then it is a decimal numeral.

• If the literal starts with 0 followed by an octal digit, then it is an octal numeral.

• If the literal starts with 0x or with 0X then it is a hexadecimal numeral.

It follows that no literal can start with, for example, 08. It follows that 0xabacadab
is an integer literal, and that abacadab is not.

If we want to know what type a variable is, then all we need to do is look at the
definition. But what is the type of a literal? Of course we can tell the difference
between integer and floating-point. But 123 is integer and is small enough to be
short. Does that make the type of this literal short?

The type of an integer literal is int, unless it is too large to be of this type. The
complete rule says that the type of an integer literal is the first of int, unsigned,
and long into which it will fit.

When it concerns large integers one should not leave it to the C compiler to
infer what the type is. For example, on an implementation with four-byte integers,
the output of

int x = 0xffffffff; //2^32 - 1 ?
printf("%d\n", x);

is −1. This is because the values of integers range from −231 to 231−1. As a result
232 − 1 lies outside the range, which makes the type of the literal unsigned. The
assignment tries to get an unsigned into an int. Most implementations issue a
warning to this effect, but produce the unintended output anyway.

52 CHAPTER 4. FUNDAMENTAL DATA TYPES

Better to say explicitly what the type of 4294967295 is. It is for situations like
this that C allows integer literals to be adorned with the suffix U or L. The lower-
case versions are also allowed, and have the same meaning. The suffix U stands for
“unsigned”; L stands for “long”.

On an implementation with four-byte integers, unsigned integers range between
0 and 232−1. A literal such as 4294967295U says explicitly that its type is unsigned.
As a result

unsigned x = 4294967295U; //2^32 - 1
printf("%u\n", x);

gives the correct output.
Similarly, the suffix L causes an integer literal to be of type long int. This

is intended to allow some literals that would be outside of the range of int to fit
inside the range of long int. However, on many implementations these types have
the same size, rendering the L suffix nugatory.

4.3.2 Character literals

Variables of the type char, although only required to hold the 128 ASCII characters,
correspond to memory locations consisting of 8 bits, giving 256 values. C only
partially specifies the characters corresponding to these integer codes.

Literals of this type that correspond to printable characters are written as that
character enclosed in single quotes. Thus, ’a’, ’b’, ’z’, ’0’, ’9’, ’.’, ’;’, ’\’’,
’\\’ are examples of character literals. Note the escape convention in the last two.

It is also possible the write a character literal as its ASCII code. This needs to
be given in the form of three octal digits preceded by a backslash. Thus, suppose
one knows that A (first letter of the alphabet, capitalized) has ASCII code 65. Then
one first converts to octal, which gives 101, so that ’A’ is equivalent to ’\101’.

For example the following program

#include <stdio.h>

int main() {
printf("%c %c %c %c %c %c\n",

’\101’, ’\132’, ’\141’, ’\172’, ’\060’, ’\071’);
}

gives as output

A Z a z 0 9

4.3.3 Floating-point literals

Sometimes conventional notation for decimal fractions is acceptable unchanged as
a floating-point literal, as in 0.1234. But scientific notation, as in 1.234 × 10−1

or 1234 × 10−4, clearly needs some adaptation. These correspond to the literals
1.234e-1, and 1234e-4, respectively.

4.4. TYPE CONVERSIONS 53

In general, a floating-point literal is distinguished from an integer by the presence
of a decimal point or an e (which may be capitalized). At least one digit before the
decimal point is needed, but not after. So 1234.e-4 is acceptable as well.

The decimal point or the e may be absent, but not both. As we saw, 0.1234 is
a floating-point literal. So is 1234e-4. But e-4 is not allowed. If the e is present,
then it needs to be followed by an integer, if only by a 0. So if we want to be
perverse, then we can write 0.1234e0, or even 0.1234e+0, or 0.1234e-0, to be
super-perverse.

4.4 Type conversions

Language designers are pulled by two opposing forces. On the one hand, variables
should reflect the type distinctions that come with the application. In this way, the
compiler can catch many programming errors. On the other hand, these same type
distinctions are often unnecessary. Enforcing them in such situations can become
unbearably pedantic. For example,

float x = 1;

is not strictly correct. The literal 1 is of type int, which is not type float. C
allows this and performs an automatic type conversion of int to float.

Conversion from int to float is only correct up to a certain limit. See Pro-
gram 4.1, where this limit is breached. A representative output is -46. The im-

0 #include <stdio.h>
1
2 int main() {
3 int i = 1234567890;
4 float x = i;
5 int j = x;
6 printf("%d\n", i - j);
7 }

Figure 4.1: Not all integers are floating-point numbers: the output may not be zero.

plementation that gave this output warned about a float being initialized by an
int, whereas the damage was really done by the automatic conversion of the int
to float.

Thus we see that automatic type conversions are a mixed blessing. To avoid er-
rors caused by such conversions, we need to understand the relations between types,
how to force conversions between them, and what the effects of these conversions
are.

54 CHAPTER 4. FUNDAMENTAL DATA TYPES

4.4.1 Relations between types

A type is a set of values. The relations between types that are easiest to explain
are those that can be described as relations between sets.

Subsets The most straightforward relations occur when one type is a subset (sym-
bol “⊆”) of another:

• short ⊆ int ⊆ long

• unsigned short ⊆ unsigned ⊆ unsigned long

• float ⊆ double ⊆ long double

Overlapping sets The next simplest relation is between the signed and unsigned
versions of the integral types. The signed version of an integral type represented in
n bits ranges from −2n−1 to 2n−1 − 1, whereas the unsigned version ranges from 0
to 2n − 1. That is, the positive signed integers coincide with the smaller half of the
unsigned integers. These two types have a significant and useful overlap.

Another significant and useful overlap is between integers and floating-point
types. Up to a certain bound, all integers are also floating-point numbers. As Pro-
gram 4.1 shows, this does not hold for integers beyond this bound. Even though
such large integers can only be approximated by floating-point numbers, the ap-
proximation is good enough for some purposes.

Characters and integers Conceptually the set of characters has nothing to do
with the set of integers. However, for historical reasons, characters can be treated
as integers in C.

It can be useful to perform arithmetic on characters. Suppose that the imple-
mentation uses the ASCII character set for char and that char ch contains an
upper case character. Then ch + ’a’ - ’A’ is the integer code for the lower-case
version of the character contained in char ch. This is because the upper-case letters
are adjacent to each other in alphabetic order; the same holds for the lower-case
letters. This is all we need to know about the ASCII codes for characters to be able
to convert between upper and lower case according to the method shown.

Similarly,

for (int n = 1234567; n ; n /= 10) printf("%c", ’0’ + (n % 10));

prints the digits of that number, alas in reverse order.

Booleans and integers Conceptually the set of Booleans has nothing to do
with the set of integers. However, for historical reasons, integers can be treated as
Booleans in C. An integer is considered the same as false if it is zero, and as true
otherwise.

For example,

sum = 0; while (n) { sum = sum+n; n--; }

computes the sum of the first n natural numbers.

4.4. TYPE CONVERSIONS 55

4.4.2 Forced type conversions

One can convert an expression to a type by writing the name of that type between
parentheses in front of the expression. For example, the conversions that happen
automatically in Program 4.1 are forced in

printf("%d\n", 1234567890 - (int)(float)1234567890);

resulting in the same output of -46, on the same implementation.
In the next example we come back to the trick of using arithmetic on characters

to convert from upper case to lower case. By forcing character type on the resulting
integer code, we cause the characters to be output. See Program 4.2.

00 #include <stdio.h>
01
02 int main() {
03 char ch;
04 printf("How many characters to convert?\n");
05 int n; scanf("%d\n", &n);
06 while (n) {
07 scanf("%c", &ch);
08 printf("%c", (char)(ch + ’a’ - ’A’));
09 n--;
10 }
11 printf("\n");
12 }

Output and (indented) input:

How many characters to convert?
10
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghij

Figure 4.2: Converting from upper case input to its lower case version for output.
Without the forced conversion to char, the integer for the numerical code would be
printed.

The character conversion is interesting because one has to know very little about
the character set. In case you are curious about the actual codes, you can force a
conversion from character to integer type to trick printf into revealing the numer-
ical code. See Program 4.3, which types all printable ASCII codes on one long line
to keep the program simple.

Apart from the insertion of a few line breaks, this output is as shown in Table 4.4.

56 CHAPTER 4. FUNDAMENTAL DATA TYPES

0 #include <stdio.h>
1
2 int main() {
3 for (char c = 32; c < 127; c++)
4 printf("%3d %c|", c, c);
5 printf("\n");
6 }

Figure 4.3: Printable ASCII: displaying the printable range char codes. To keep
the program simple, the output is on one line.

32 | 33 !| 34 "| 35 #| 36 $| 37 %| 38 &| 39 ’| 40 (| 41)|
42 *| 43 +| 44 ,| 45 -| 46 .| 47 /|
48 0| 49 1| 50 2| 51 3| 52 4| 53 5| 54 6| 55 7| 56 8| 57 9|
58 :| 59 ;| 60 <| 61 =| 62 >| 63 ?| 64 @|
65 A| 66 B| 67 C| 68 D| 69 E| 70 F| 71 G| 72 H| 73 I|
74 J| 75 K| 76 L| 77 M| 78 N| 79 O| 80 P| 81 Q|
82 R| 83 S| 84 T| 85 U| 86 V| 87 W| 88 X| 89 Y| 90 Z|
91 [| 92 \| 93]| 94 ^| 95 _| 96 ‘|
97 a| 98 b| 99 c|100 d|101 e|102 f|103 g|104 h|105 i|
106 j|107 k|108 l|109 m|110 n|111 o|112 p|113 q|
114 r|115 s|116 t|117 u|118 v|119 w|120 x|121 y|122 z|
123 {|124 ||125 }|126 ~|

Table 4.4: Result of running Program 4.3 on an implementation where codes
0, . . . , 127 coincide with ASCII. The output was broken up into several lines.

4.4.3 Automatic arithmetic conversions

In the following fragment, the operands of division have incompatible types.

int i = 1; float x = 1.0; printf("%f", x/i);

This requires a decision as to whether the division operator denotes the integer or
the floating-point version of the operation.

Such decisions are made by automatic type conversion, which is based on nu-
merical types being part of a hierarchy. If an arithmetic operator has operands at
different levels in the hierarchy, then the lower-level operand is converted to the
type of the other operand.

One criterion for being high or low in the hierarchy is whether one type is a
subset of the other. This takes care of ordering among the integer types and among
the floating-point types.

4.5. ENUMERATIONS 57

In addition, the floating-point types are placed higher in the hierarchy than the
integer types. This in spite of the fact that some integers are not floating-point
numbers. We saw 1234567890 as an example.

This rule has the virtue of avoiding loss of information in many cases. Between
floating-point types, the lower type can convert to the higher type without loss of
information. The same holds between the integer types.

4.5 Enumerations

It can be useful to have one or more finite sets of arbitrary objects rather than
integers. These are specified by enumerating their members. In C such sets are
modelled by means of an enumeration. Examples of such sets are

{ Earth, Water, Fire, Air } and { cyan, magenta, yellow, black }.

In C such types are created by means of the enum keyword. The above examples
are implemented by the following declarations.

enum element {Earth, Water, Fire, Air};
enum colour {cyan, magenta, yellow, black};

After such a declaration, one can define variables that have the newly introduced
types. One would like to write simply element e0, e1; or colour c0, c1;, but
with the declarations in the above form, the definitions have to be enum element
e0, e1; or enum colour c0, c1;.

C allows the introduction of names for types by means of the keyword typedef.
We can combine the declaration of the enumeration type with typedef as follows:

typedef enum {Earth, Water, Fire, Air} element;
typedef enum {cyan, magenta, yellow, black} colour;

When the declaration is in this form we can write element e0, e1; and colour
c0, c1;.

Sometimes one wants to work with ordered sets. Though these have a natural
mapping to integers, it is better not to identify them with integers. Common
examples are

{ Monday, . . . , Friday } and { January, . . . , December }

Whether the enum sets are ordered or not, C identifies them with integers. This
allows arithmetic to be performed on them, as shown in Program 4.4. The default is
for the integers to start at 0. C provides syntax to override this default. For example,
one would prefer January to be identified with 1 rather than 0; see Program 4.4.

58 CHAPTER 4. FUNDAMENTAL DATA TYPES

00 #include <stdio.h>
01
02 int main() {
03 typedef enum{Monday, Tuesday, Wednesday, Thursday,
04 Friday, Saturday, Sunday} Day;
05 for (Day day = Monday; day <= 10; day++)
06 printf("%d ", day);
07
08 typedef enum {
09 January = 1,
10 // the default would be 0, which doesn’t feel right
11 February, March, April, May, June, July,\
12 August, September, October, November, December
13 } Month;
14 Month m1 = February, m2 = August;
15 printf("\nMonths from February to August: %d\n", m2 - m1);
16
17 // m1 = Monday; // error: wrong type
18
19 enum Permissions {read = 4, write = 2, execute = 1};
20 printf("%d %s\n", read, " read only");
21 printf("%d %s\n", read+write, " read and write");
22 printf("%d %s\n", read+write+execute
23 , " read, write, and execute"
24);
25 }

Figure 4.4: Examples of enumerations. Line 15 commented out shows that, although
the values of an enumeration are encoded as integers, they are distinct types. In
this way errors, such as the one shown in this line, get caught by the compiler.

0 1 2 3 4 5 6 7 8 9 10
Months from February to August: 6
4 read only
6 read and write
7 read, write, and execute

Table 4.5: Result of running Program 4.4.

4.6 Miscellaneous topics concerning data types

4.6.1 sizeof

To avoid as much as possible to have to modify code to run on a different imple-
mentation, it is possible for the code itself to find out what the sizes of the types

4.6. MISCELLANEOUS TOPICS CONCERNING DATA TYPES 59

are. See the use of the sizeof operator in the program in Figure 4.5.

1 #include <stdio.h>
2 #include <stdbool.h>
3
4 int main() {
5 printf("sizes of:\n");
6 printf("bool char short int long float double long double\n");
7 printf(
8 "%lu %lu %lu %lu %lu %lu %lu %lu\n",
9 sizeof(bool), sizeof(char), sizeof(short), sizeof(int),

10 sizeof(long), sizeof(float), sizeof(double), sizeof(long double)
11);
12 }

Figure 4.5: Program for printing the sizes of some fundamental data types.

The output of this program depends on the implementation. Here is one exam-
ple:

sizes of:
bool char short int long float double long double
1 1 2 4 8 4 8 16

The system on which the previous edition of this book was developed had a different
computer architecture. The resulting difference in C implementation caused this
program to give as output:

sizes of:
bool char short int long float double long double
4 1 2 4 4 4 8 16

Apparently this computer architecture gave no support for double-length integers.
To make them available in C would require software simulation, which implies a
performance penalty. The implementers of C on this architecture chose not to do
this so that long integers are the same as integers. The C standard allows this. It
is rare for an application to be affected, but such a difference can be crucial. It is
important to be aware of the possibility.

The use of sizeof typically involves a variable to hold the result of this operator.
Program 4.5 is not typical in this respect. What type should we give such a variable?
Depending on the implementation of the C language, the result of sizeof could be a
rather large integer. Usually we make the type int or unsigned. But, to be guarded
against extreme situations, we should make the type size_t. This type has been
especially introduced for the purpose. It ensures that in the implementation in use
a variable of this type is allocated enough storage.

60 CHAPTER 4. FUNDAMENTAL DATA TYPES

4.6.2 printf codes

type desired notation recommended code
(short, long) int decimal d
(short, long) unsigned decimal u
(short, long) unsigned octal o
(short, long) unsigned hexadecimal x, X
(signed, unsigned) char alphabetic c
float decimal fraction f
(long) double decimal fraction lf
float scientific notation e
(long) double scientific notation e

Table 4.6: printf codes for types discussed in this section.

Chapter 5

Memory

You may have been puzzled by the fact that both x = y and x = 1 are correct
assignment statements, even though they are quite different: in x = y the variable
x gets the value of the variable y. In x = 1 the right-hand side is not a variable
with a value to be used, but is itself a value. The relationship between variables
and their values needs to be made more precise.

5.1 The attributes of a variable

A variable is a contiguous area of memory. It always has an address and a content;
it typically has a name and a type as well. Hence the four attributes of a variable:

Name The name of a variable is an identifier, which is in principle any sequence of
letters, digits, or underscores. But to make identifiers and numerals easier to
tell apart, an identifier cannot start with a digit.

Content Memory is a sequence of bytes, each of which consists of eight bits. Each bit
is at any moment in one or two states. This is true whether or not the state
has been determined intentionally. The variable’s content is a contiguous area
of memory.

Type The content of a variable is a meaningless sequence of bits unless we interpret
these bits in a the right way. Only after this interpretation does the variable’s
content become data. How we interpret the content of a variable is determined
by the type of data that the variable is intended to store.

Data can be numerical (various kinds of integer, two kinds of fractions) or
text (various kinds of character).

Address As a variable is a contiguous area of memory, it consists of a sequence of one
or more bytes. The address of a variable’s first byte is the address of the
variable.

61

62 CHAPTER 5. MEMORY

The value of a variable is not one of its attributes, but is determined by its content
and by its type. That is, only when we know the type of the variable can we interpret
the meaning of the bits that constitute the content. For example a variable can have
the bit sequence 0x3dcccccd as its content. If the variable is of type float, then
its value 0.1; if it is of type int, then its value is 1,036,831,949.

Variable or constant? Consider

const double G0 = 6.673e-11;
double G1 = 6.673e-11;

Here G0 is a constant and G1 is a variable. One might think that the compiler
would replace every occurrence of G0 by 6.673e-11. This is not the case: G0 is also
a variable, as you may prove to yourself by printing &G0. This shows that G0 has an
address, and if it has an address, then it must be a variable. It is only a constant
in the sense that the compiler prevents code from changing its content.

int

y

0xffbef934

address

value

type

name

1

Figure 5.1: The attributes of a variable created by int y = 1. The address is
typically different for different systems and on the same system for different compile,
load, and execute cycles.

To clarify the relationship between the attributes of a variable, it is useful to
outline what you need to know about data in a computer. Higher-level languages
like C are designed in such a way that the programmer needs to know very little
about the architecture of the computer on which the language is implemented. Here
are some of the few things you do need to know.

All architectures include a processor and memory. The processor operates on
data; memory stores data. Memory is a sequence of bits. Individual bits in this
sequence are not directly accessible. The bits in memory are subdivided into non-
overlapping cells that are eight bits wide and are called bytes. It is these bytes that
have successive addresses. The byte with address a is followed by the byte with
address a+ 1. These addresses make the cells accessible.

5.2. ADDRESSES 63

Another important property of an architecture is the size of a word, which
is the chunk of data that gets transferred between memory and processor. Many
computers have four-byte words. Faster computers tend to have larger words. In the
early years of the 21st century, the smallest and cheapest computers had one-byte
words; these are the 8-bit microcontrollers. At the same time, the high-performance
servers or workstations had 64-bit processors: eight bytes to a word.

5.2 Addresses

Given a variable’s name, we can obtain its address by means of the address operator
&. See Program 5.4 for examples.

The address is a nonnegative integer. It is useful to reserve one such integer
that cannot be an address. This is the null address.

5.3 Pointers

For every type T , there is a type T ∗ called “pointer-to-T”. When a variable’s type
is pointer-to-T for some T , it is called a pointer and its address is interpreted as
the address of a variable of type T . A variable that has the null address as value is
called a null pointer.

Let us create a variable x which is a pointer that points to an integer variable
y. The type of x is int*; this variable is defined by int *x;. Here the value of x
is the address of y rather than the value of y. The address is obtained by applying
the address operator & to the variable y. Thus the assignment in

int *x, y = 1; x = &y; printf("%x\n", x);

causes x to have as value the address of y; x is said to have become a pointer to y.
We see the address of y, which is the value of x from the print statement. This shows
something like bffff610, which is a hexadecimal numeral. The conversion code %x
assures conversion to this format, which is the appropriate one for addresses.

See Figure 5.2.
From the above it will be clear that the pointer x contains as value the address

of y, not the content of y. Yet we can use x to obtain the value of y indirectly by
means of the operator *. It is called the dereferencing operator.

To continue the above example:

int *x, y = 1; x = &y; z = *x; printf("%d\n", z);

causes 1 to be printed because *x has as value the value of the variable that x points
to. Thus x has as value the address of y while *x has as value the value of y. It is
always the case that executing

x = &y; z = *x;

64 CHAPTER 5. MEMORY

1

int

y

0xffbef934

0xffbef934

int*

x

0xffbef938

1

int

y

int*

x

A result of: int y = 1; x = &y;

Content of x shown numerically above; shown symbolically below.

Figure 5.2: Two variables, one of which is a pointer to the other.

has the same effect on z as executing z = y. The example can be made more
succinct by saying that z = y and z = *(&y) have the same effect.

A pointer variable, say, ip, is a variable and therefore has an address. That
address can be the value of a variable, say, ipp. This variable could be defined as
in

int i = 13; int *ip; int **ipp;
ip = &i; ipp = &ip;

One finds this usually in the shorter form

int i = 13, *ip = &i, **ipp = &ip;

With pointers one can access a variable directly or indirectly, or even doubly indi-
rectly, as in

int i = 13, *ip = &i, **ipp = &ip;
printf("%d %d\n", *ip, **ipp);

giving

13 13

Typically direct access is used, but there are situations in which indirect access, or
even doubly indirect access, is appropriate.

See Program 5.4, Direct and Indirect, for a direct and an indirect exchange.

5.4. POINTER ERRORS 65

1

int

 i

int*

ip

int**

ipp

Figure 5.3: A pointer pointing to a pointer.

00 #include <stdio.h>
01
02 int main() {
03 int i = 0, j = 1, temp;
04 int *ip = &i, *jp = &j;
05
06 temp = i; i = j; j = temp;
07 printf("%d %d\n", i, j);
08 temp = *ip; *ip = *jp; *jp = temp;
09 printf("%d %d\n", i, j);
10 }

Figure 5.4: Direct and Indirect, exchanging the values of two variables directly and
also indirectly via pointers to these variables.

5.4 Pointer errors

Of all the addresses that can be the value of a pointer variable, a relatively small
subset are addresses of the first bytes of existing variables. C places no constraints on
the values that can be assigned to a pointer variable. An error in such an assignment
almost always causes the program to crash. See Program 5.6, Invitation to Disaster.

To understand the consequences of dereferencing and erroneous pointer it helps
to understand the main outlines of a computer’s architecture. The components of a
computer that concern us here are its processor and its memory. It is the processor
that operates on data. The data are stored in memory. Also stored in memory are
the instructions ultimately resulting from the translation of the program’s source
code.

The computer’s design is in one of two main categories: von Neumann architures
and Harvard architectures. The former has one memory for both instructions and
data. In the latter there is one memory area for instructions (i-space) and a separate
one for data (d-space). In the first decades of digital computing most machines had
von Neumann architectures; more recently some form of Harvard architecture is

66 CHAPTER 5. MEMORY

int

i

1

int

j

0

int

temp

0

int*

ip

int*

jp

temp = *ip; *ip = *jp; *jp = temp;

int

i

0

int

j

1

int

temp

1

int*

ip

int*

jp

just before

just after

Figure 5.5: Illustrating the program in Figure 5.4.

predominant.
As long as an erroneous pointer points into d-space, dereferencing it allows ex-

ecution of the program to continue, although with unintended results. Typically,
sooner or later, a pointer will be dereferenced that points outside d-space. To un-
derstand the consequence of this it is useful to realize that the program may not
be the only program being executed on the machine. Often there are many such
programs, all under supervision of the operating system. The operating system can,
and does, detect when one of the programs addresses a part of memory that is out-
side its d-space. In such a situation the operating system discontinues execution of
such a program. If the operating system is some variant of Unix, the accompanying
message is “segmentation fault”.

In the case of a von Neumann architecture the situation differs only in details.

5.4. POINTER ERRORS 67

0 #include <stdio.h>
1
2 int main() {
3 int *ip = (int *)123456;
4 printf("%d\n", *ip); // crash
5 }

Figure 5.6: Invitation to Disaster, a program that is likely to crash.

The operating system assigns to each program a memory area that is not differen-
tiated into i-space and d-space. It is possible for an erroneous pointer to point to
an address that is an instruction’s address, or even is in the middle of an instruc-
tion. This widens the repertoire of bizarre behaviours. But, just as with Harvard
architectures, it is likely that an address is generated that is recognized as invalid
by the operating system, followed by the program’s crash.

68 CHAPTER 5. MEMORY

Chapter 6

Functions

There’s more to functions than what we saw of them in Chapter 3. For example, we
only moved data in via parameters. How to get data out in this way? We want to
execute the body of a function with different values of the actual parameters. We
only did this with numerical parameters. How can a function be made a parameter
of a function? Before all this I give a more detailed description of function definition
and function that I did so far.

6.1 Blocks

A block is a sequence of definitions and statements enclosed in braces. If a variable
defined in a block has the same name as a variable defined outside the block, then
the name does not refer to the variable defined outside. The effect of defining a
variable in a block is to make it impossible to reference any variable with the same
name outside the block. Thus we see that, although the name is one of the attributes
of a variable, this attribution is not permanent.

The properties of blocks are illustrated in Program 6.1: Global and local. Let
us call the variables created in lines 02, 06, and 09 respectively v0, v1, and v2.
Note that all three have the same identifier, namely i. In line 10 the identifier i
refers to v2, and to v2 only. There is only one variable with identifier ip_1 in the
program, and in line 11 it is the only way to access v1. There is only one variable
with identifier ip_0 in the program, and in line 12 it is the only way to access v0.

To understand the behaviour of Program 6.1 it may help to use the concept
of scope. The scope of a declaration is the part of the program in which that
declaration is in force. The scope of the declaration of line 02 extends from this
line to line 15. The scope of the declaration of line 06 extends from this line to
line 15. The scope of the declaration of line 09 extends from this line to line 13.
Scope needs to be contrasted with the visibility of a declaration. Between lines 10
through 12 three declarations are in force. Because all three use the same identifier,
only the innermost declaration is visible.

69

70 CHAPTER 6. FUNCTIONS

The connection between identifier i and variable v1 is established in line 06, has
ceased to exist between lines 09 and 13, and is re-established in line 14.

00 #include <stdio.h>
01
02 int i = 11, // i identifies variable v_0
03 *ip_0 = &i;
04
05 int main() {
06 int i = 12, // i identifies variable v_1
07 *ip_1 = &i;
08 { // block entry
09 int i = 13; // i identifies variable v_2
10 printf("value of v_2: %d\n", i);
11 printf("value of v_1: %d\n",*ip_1);
12 printf("value of v_0: %d\n",*ip_0);
13 }
14 printf("value of v_1: %d\n", i);
15 }

Figure 6.1: Global and Local: three variables, one identifier.

6.2 Function definitions

A function definition has the following structure

type name parameter-list body

The part before the body is called the header of the function. Sometimes it is
necessary to make the name and type of a function known in a place where it must
not be defined. In that case one writes a function prototype, which is the header
followed by a semi-colon.

1. type
is a data type such as int or double. It is the type of the value returned by
the function. It can also be void, which specifies that the function does not
return a value.

2. name
is the identifier that names the function.

3. parameter-list
is a list of items. The list is enclosed by parentheses; the items are separated
by commas. Each item is a type followed by an identifier, which is the name
of a formal parameter.

6.3. FUNCTION CALLS 71

4. body
is a block.

The variable names that occur in a function body can refer to three kinds of
items.

1. If the name occurs in the parameter list, then the name refers to a formal
parameter.

2. If the body contains a definition of a variable of that name, then the name
refers to a local variable.

Local variables are local in the sense that they are only present in memory
when the body in which they occur is being executed. Their names are local in
the sense that they refer to the local variable and not to any possibly existing
variables with that name defined elsewhere.

The memory for a local variable is allocated when execution passes the opening
brace of the body; it is de-allocated upon termination of the function call. The
value such a variable has is not retrieved on later re-entry into the same body∗.

3. If neither of the above is the case, then the name refers to a variable defined
outside any function. Such a variable is said to be a global variable.

6.3 Function calls

If an expression is a function call, then its evaluation takes place in the following
steps.

1. The actual parameters, which are expressions, are evaluated.

2. The function call is replaced by the function body. Local variables are unas-
signed. Global variables retain their values. For every formal parameter a
local variable is created of the same name and type and is initialized with the
value resulting from the evaluation of the actual parameter corresponding to
the formal parameter. This process is called parameter passing.

3. Execution of the body starts at the first statement of the body. How the
body’s execution ends depends on whether the function returns a value.

We first consider the case where the function does return a value. Normally
the final step in executing the body is the execution of a return statement with
an argument. The effect of such a statement is that the value of the argument
is substituted for the expression that constitutes the function call. If execution
reaches the end of the body without encountering a return statement, then
the effect is as if a return statement with no expression were executed; the
value that replaces the function call is not defined.

∗This behaviour is the default. We will encounter an exception later.

72 CHAPTER 6. FUNCTIONS

We now consider the case where the function does not return a value. In this
case the definition has the keyword void in place of the return type. Again
execution of return terminates execution of the body. But in this case there
is no expression after return.

See Program 6.2, Evanescent Exchange, for an example of function definition
and call.

00 #include <stdio.h>
01
02 void foo(int u, int v) {
03 int k = u; u = v; v = k;
04 }
05 int main() {
06 int x = 1, y = 2;
07 printf("%d %d\n", x, y);
08 foo(x, y);
09 printf("%d %d\n", x, y);
10 }

Figure 6.2: Evanescent Exchange: a function possibly intended, but certainly fail-
ing, to exchange its actual parameters.

Exchanging the values of two variables is something frequently needed—ideal
code for encapsulating in a function. Consider Program 6.2, Evanescent Exchange.
When we run this program, we find that the values of x and y have not been
exchanged. How can this be explained?

Remember that in parameter passing, the actual parameters x and y are regarded
as expressions and their values are used to initialize the formal parameters u and
v. These formal parameters are variables local to the body of the function called.
These variables are distinct from x and y. Hence the values of the formal parameters
u and v are exchanged; the values of x and y remain unchanged.

How do we define a function that exchanges the values of the variables that
occur as actual parameters in a call to the function?

Consider again Program 5.4. Here there are two variables that get their values
exchanged. It is done in two ways: directly and indirectly via pointers to the
variables. The direct method in the function foo in Program 6.2 results in the values
of the local copies of the actual parameters being exchanged, but not the actual
parameters themselves. Program 6.3, Exchange, uses the indirect method. As
always, the actual parameters are copied into the formal parameters. But here these
copies are pointers and they are used to access the values of the actual parameters,
so that the desired exchange is effected.

Parameter-passing mechanisms In step 2 in the above description of calling
a function we saw that to the formal parameters there correspond local variables of

6.3. FUNCTION CALLS 73

the same name and type. Upon entering the body of the function, these variables
are assigned the values obtained by evaluating the actual parameters in the previous
step.

This is the parameter-passing mechanism of C. It is called call-by-value. Some
other programming languages have a different mechanism, possibly as alternative
to call-by-value.

Without the existence of pointers, call-by-value would exclude the possibility of
using a parameter for output. In Program 6.3 we see how a pointer can be passed
by value, yet enable a function call to produce output via a parameter. This specific
use of pointers is sometimes called “call-by-reference”. This meaning of the term is
restricted to C. C++, for example, has two distinct parameter-passing mechanisms.
One of these is call by value. The other has no counterpart in C, and is named “call
by reference”.

00 #include <stdio.h>
01
02 void swap(int* u, int* v) {
03 // Purpose: Exchange values of the variables
04 // pointed to by the actual parameters.
05 // Preconditions: None.
06 int k = *u; *u = *v; *v = k;
07 }
08 int main() {
09 int x = 1, y = 2;
10 printf("%d %d\n", x, y);
11 swap(&x, &y);
12 printf("%d %d\n", x, y);
13 }

Figure 6.3: Exchange: exchange actual parameters.

74 CHAPTER 6. FUNCTIONS

foo(x,y);

int

x

1

int

y

2

int

v

int

u

?

int

k

int

x

1

int

y

2

Formal parameters, initialized at
actual parameters, are created.
The local variable is created.

1

2

Figure 6.4: Illustrating the program in Figure 6.2: function entry.

6.3. FUNCTION CALLS 75

k = u; u = v; v = k;

int

x

1

int

y

2

int

v

int

u

?

int

k

int

x

1

int

y

2

int

v

int

u

1

int

k

1

2

2

1

Figure 6.5: Program in Figure 6.2: the exchange operation.

76 CHAPTER 6. FUNCTIONS

return;

int

x

1

int

y

2

int

v

int

u

1

int

k

int

x

1

int

y

2

The formal parameters and
the local variable have vanished.

1

2

Figure 6.6: Program in Figure 6.2: function exit—nothing happened.

6.4. FUNCTIONS AS ACTUAL PARAMETERS 77

6.4 Functions as actual parameters

Thus far we have encountered three kinds of things that have names: variables,
constants, and functions. Let’s compare them. Constants have all the attributes of
variables: they are areas of memory that have an address, a type, a content, and,
typically, a name. Constants differ only in the unchangeability of their contents.

The body of a function consists of code, and code occupies memory. So we can
regard a function as an area of memory. It also has a name. Apparently, functions
have their main attributes in common with variables. But there are important
differences.

To start with, the content of the memory area occupied by a function body
cannot change. This makes a function more like a constant than like a variable.
Like a constant, a function has a type. But where a constant can have only one
of a small number of predefined types, the type of a function is determined by its
definition: the type is the ordered list of the types of its formal parameters paired
with the type of the returned value.

Another way in which functions are different from variables is that their content
cannot be copied to other functions. For variables such copying makes sense: we do
it so we can operate on the copy while preserving the original, or vice versa. As C
provides no operations on functions, copying the content of a function would serve
no purpose. Every function defined in a program is stored in one area of memory
only, and its content cannot be changed by any action of the program.

Variables and constants have addresses, which are the addresses of the first byte
of their memory areas. As a function is also a memory area, it has an address.
Hence the address operator & applies to functions. For example, given the functions

int up(int x, int y) {return x <= y;}
int down(int x, int y) {return x >= y;}

we get the addresses of these functions from the expressions &up and &down.
To demonstrate how we can use function addresses, let us revise Program 3.4.

The task of comparing two items is very common. For example, we might want to
compare the absolute values of two numbers. We need to generalize the outcomes
“smaller” and “larger” to “before” and “after”.

The possibility of functions to be actual parameters allows us to vary the com-
parison criterion while leaving the comparison code unchanged. See Program 6.7,
Parametrized Compare.

We are going to make the comparison operation into an additional formal pa-
rameter of the sort3 function. The actual parameter cannot be the comparison
function itself, but it can be the address of this function. The formal parameter,
like all formal parameters, needs to have its name and type listed. We do this with
the aid of

typedef int (*cmp)(int, int);

The keyword typedef defines a type and introduces a name for it. Read this as:
the type cmp (“number comparison”) is a pointer (indicated by the * in *cmp) to a

78 CHAPTER 6. FUNCTIONS

00 #include <stdio.h>
01 #include <stdlib.h> // for abs()
02
03 int intcmp(int a, int b, int (*cmp)(int, int)) {
04 if ((*cmp)(a,b) < 0) return -1;
05 if ((*cmp)(a,b) > 0) return 1;
06 return 0;
07 }
08 int numComp(int a, int b) {
09 if (abs(a) < abs(b)) return -1;
10 if (abs(a) > abs(b)) return 1;
11 return 0;
12 }
13 int main() {
14 printf("Input two numbers\n");
15 int a, b;
16 scanf("%d %d", &a, &b);
17 if (intcmp(a, b, &numComp) < 0)
18 printf("first before\n");
19 else if (intcmp(a, b, &numComp) > 0)
20 printf("first after\n");
21 else printf("equal\n");
22 }

Figure 6.7: Parametrized Compare, similar to Program 3.4.

function that takes two integer parameters and delivers an int result. This type is
that of a function pointer.

Functions as parameters of functions can be summarized by Program 6.9 where
almost nothing else happens.

6.5 Dangling pointers

Recall from Program 6.1 that when execution reaches line 14, the variable v2 no
longer exists. In general, local variables only exist during execution of the block in
which they are defined.

Now, recall that the body of a function is a block. Therefore, on exit from a
function, the function’s local variables have disappeared. There is no danger that
such a non-existent variable is accessed via its name, because the association of
that name and that variable only exists when the body in being executed. But it is
possible that a pointer that is not local to the function has as value what was once
the address of a local variable of the function. This kind of pointer error goes by

6.6. EXERCISES 79

#include <stdio.h>

typedef int (*cmp)(int, int);
void two_sort(int* x, int* y, cmp f) {
// Purpose: sort parameters according to comparison function f
// Prerequisites: None
int temp;
if ((*f)(*y, *x)) { temp = *x; *x = *y; *y = temp; }

}
int incr(int x, int y) { return x <= y; }
int decr(int x, int y) { return y <= x; }

int main() {
int x = 2, y = 1;
two_sort(&x, &y, &incr);
printf("%d %d\n", x, y);
two_sort(&x, &y, &decr);
printf("%d %d\n", x, y);

}

Figure 6.8:

#include <stdio.h>

int f(int x) {return x;}
int apply(int (*f)(int), int x) {return (*f)(x);}

int main() {
printf("%d\n", apply(&f, 1234));

}

Figure 6.9: Example of function with function parameter.

the name of dangling pointer. See Program 6.10: Dangling Pointer, for an example.

6.6 Exercises

6.6.1 Plotting sine

Without graphics one can get a rudimentary form of plotting by printing lines
consisting of spaces followed by some visible character. This exercise is the provide

80 CHAPTER 6. FUNCTIONS

0 #include <stdio.h>
1
2 int* foo(int i) { return &i; }
3 int main() {
4 int* ip = foo(13);
5 for (int i = 0; i < 12; i++)
6 printf("%d %d\n", i, *(ip++));
7 }

Sample output:

0 13
1 1795844960
2 32767
3 189431498
4 1
5 0
6 0
7 0
8 8
9 1795844944
10 32767
11 1795850329

Figure 6.10: Dangling Pointer: a program with undefined behaviour. It prints
unpredictable integers and may crash before dying a natural death. If the first
printed integer is 13, that can be explained, but is not predicted by the C language
definition.

the functions missing in Program 6.11 so as to give the output shown.

00 #include<stdio.h>
01 #include<math.h>
02
03 double sine(double x) {
04 double y, xScale = 0.5, yScale = 20.0;
05 // scale factors to make plot fit
06 x *= xScale;
07 y = 1 - sin(x);
08 return y*yScale;
09 }
10 typedef double (*func)(double);
11 void plot(double a, double h, double b, func f, char ch);
12 int main() {
13 plot(0, 1, 22, &sine, ’s’);
14 }

Figure 6.11: Program to plot a part of the sine function.

6.6. EXERCISES 81

s
s

s
s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

s
s

Figure 6.12: Plot of a part of the sine function.

6.6.2 Cannon ball trajectory

This exercise is to plot the trajectory of a cannon ball fired at an elevation of 75
degrees and a muzzle velocity of 150 m/sec. Assume 9.81 m/sec2 for the acceleration
of gravity. Ignore the effect of the atmosphere.

If the positions of the cannon ball are plotted at intervals of one second, you
should get the output shown in Figure 6.13. Insert a one-second delay between
successive lines. In this way you get a real-time simulation of the flight of the
projectile.

A delay can be obtained by means of a loop that is traversed a large number
of times. Such a loop does not have to do anything in particular. See the function
wait in Program 6.14: Countdown. The delays obtainable are restricted to integer
multiples of a whole second. This is because the library function time does not give
fractional seconds.

82 CHAPTER 6. FUNCTIONS

o
o

o
o

o
o

o
o
o
o

o
o

o
o

o
o

o
o

Figure 6.13: Trajectory of cannon ball.

00 #include <stdio.h>
01 #include <time.h>
02
03 void wait(int n) {
04 // Purpose: to delay the calling function by n seconds.
05 // Preconditions: n >= 0.
06 int t = time(NULL);
07 while (time(NULL) < t+n);
08 }
09
10 int main() {
11 for (int i=10; i>0; i--) {
12 printf("%d\n", i); wait(1);
13 }
14 printf("GO!\n");
15 }

Figure 6.14: Countdown: using a wait function.

Chapter 7

Expressions

In Program 2.2 we used an expression to compute a formula for gravitational at-
traction:

printf("%f newtons.\n", G*(m1*m2)/(r*r));

Expressions are an advance over the early days of programming, when every state-
ment corresponded to a single machine instruction. As a result, statements could
not perform more than one operation. To get the value f of G*(m1*m2)/(r*r), one
had to do instead something like:

f = G; f = f*m1; f = f*m2; f = f/r; f = f/r;
printf("%f newtons.\n", f);

Clearly, expressions, which can be as complex as one likes, are very convenient.
We will see that expressions are not only used for computing values of numerical

formulas. Expressions also compute conditions to help in complex decisions. They
manipulate bit vectors in support of systems programming tasks. We will see that
assignment statements are also expressions, even if they do not involve arithmetic,
logic, or bit operations.

7.1 The structure and value of an expression

Expressions follow to a large extent the evaluation conventions for arithmetic that
we learned in school. For example, a+b*c means a+(b*c) rather than (a+b)*c. A
difference is that expressions in programs are not restricted to arithmetic, but are
used for a wider variety of applications. Also, some of the details may be different.
Your high school math teacher probably had a definite opinion about whether 1/r/r
is 1/r2 or whether it is just a complicated way of writing “1”. C also has a definite
opinion, and it may not be the same as that of high-school teachers (who may not
have agreed among themselves on this particular example).

83

84 CHAPTER 7. EXPRESSIONS

Operators and operands An expression may contain operators, operands, and
parentheses. In g*m1*m2/(r*r) the operators are * and /, denoting the operations
of multiplication and division, respectively. The operands are the values that the
operators act on. In this case the operands are g, m1, m2, and the two occurrences
of r.

The multiplication and division operators take two operands; they are therefore
called binary operators. Other binary arithmetic operators are -, +, and %. The
latter is the remainder operation that gives the remainder upon division of the left
operand by the right operand. Other binary operators exist, to which we will come
presently.

The unary operators take one operand. For example, the minus in -273 is unary
and it is a different minus from the binary one in a-b. The first acts on a single
value, reversing its sign. Similarly, C has a unary minus operator, using the same
symbol -. The unary plus was added for reasons of symmetry, not because there
was any urgent need for it.

School mathematics leaves it at unary and binary operators. In C we have
conditional expressions consisting of an operator with three operands, a ternary
operator. For example, instead of printing the minimum of two numbers with

int a,b; scanf("%d %d", a, b);
if (a<b) printf("%d\n", a);
else printf("%d\n", b);

we can use a conditional expression and write

int a,b; scanf("%d %d", a, b);
printf("%d\n", a<b ? a : b);

The ternary operator consists of the two symbols ? and :.

Structure and value The structure of an expression is implied by a definition
such as:

An expression E is either atomic or it is composite. If it is atomic, then
it consists of a variable or literal only. If it is composite, then it consists
of one operator (unary, binary, or ternary) with its one, two or three
operands, which are expressions. The latter are the subexpressions of
E.

The value of an expression E is defined in a way that reflects its structure:

• if E is a literal or a variable, then the value of E is the value of that literal or
variable

• if E is composite, then the value of E is the result of applying the operator
of E to the values of the subexpressions of E

7.2. ARITHMETIC OPERATIONS 85

A definition like this, which defines an entity in terms of itself, is called a recur-
sive definition. Its recursive nature allows expressions to be arbitrarily complex. It
allows expressions to be nested inside an expression.

For example, a+((b/c)-d) is a composite expression where the operator is +. It
is a binary operator, so it has a left operand, which is a and a right operand, which
is (b/c)-d. The left operand a is an atomic expression, as it does not consist of
an operator and operands. The right operand (b/c)-d is a composite expression,
where the operator is -. It is a binary operator, so it has a left operand, which is
the expression b/c and a right operand, which is the atomic expression d. The left
operand is a composite expression with / as operator and two atomic expressions
as operands.

Associativity and precedence In the above example, it was possible to de-
termine the structure of a+((b/c)-d) because the parentheses determine at every
stage what is the operator and what are the operands. Let us call such an expression
fully parenthesized.

It is not always convenient to write fully parenthesized expressions. For example,
this would mean writing a+((b+c)+d), a+(b+(c+d)), (a+b)+(c+d), ((a+b)+c)+d,
or (a+(b+c))+d. All of these should have the same value, so it is reasonable to be
allowed to write a+b+c+d.

In fact we are. But a+b+c+d, still is interpreted as an expression according to
the definition, so it is interpreted as exactly one of the above fully parenthesized
expressions, namely ((a+b)+c)+d. This interpretation is implied by a property of
the addition operator: we say that it associates to the left. In general it means that
if we write α + β + γ, where α, β, γ are any expressions, it means (α + β) + γ.
All arithmetic operators associate to the left, so that 1/r/r means(1/r)/r, which
typically has a value that is different from 1/(r/r).

The property of associating to the left or to the right is sufficient to elucidate the
structure of an expression without parentheses and with multiple operators, if these
operators are the same. Often they are not and then we need a second property of
operators. It is called precedence. For example, a+b*c means a+(b*c) rather than
(a+b)*c. This is because the multiplication operator has a higher precedence than
addition. See Appendix A for a listing of operators and their precedences.

7.2 Arithmetic operations

The arithmetic operators are * (multiply), / (divide), and % (remainder) with higher
precedence, and + (add) and - (subtract) with lower precedence.

The remainder operation is only intended for integers. The other operations
come in pairs, one for integers and one for floating-point numbers. If both operands
of / are recognized as integers, then the meaning is integer division, so that the
value of 1/2 is zero. If at least one of the operands has a floating-point type, then
it means floating-point division, so that the value of 1.0/2.0 is one half.

Integer division gives an integer result, which is obtained by removing the

86 CHAPTER 7. EXPRESSIONS

fractional part from the quotient. In fact, for all integers n and k we have that
n = (n/k) ∗ k + n%k.

Multiplication, addition, and subtraction are also overloaded and come in integer
and floating-point versions. On a computer with four-byte integers we get a striking
difference between the values of the two expressions

1234567890 + 1234567890 and 1234567890.0 + 1234567890.0

as well as between

1234567890 * 1234567890 and 1234567890.0 * 1234567890.0

The integer versions give nonsense because of overflow, whereas the floating-point
versions may give an incorrect result that, however, approximates the true value
closely enough for most purposes.

7.3 Boolean operations

An expression can have one of the Boolean values true or false. Such an expression
occurs as a condition in a selection statement or in an iteration statement. In a
selection statement, the Boolean expression steers the execution into one branch or
the other. In an iteration it determines whether execution continues.

In C one can use an integer instead of a Boolean value. The role of false is
played integer 0; any other integer value plays the role of false.

An atomic numerical expression is a variable or a literal. For Boolean expres-
sions, there is an additional possibility: it can be a relational or an equality expres-
sion. A relational expression is consists of two numerical operands and one of the
binary operators

< > <= >=

An equality expression consists of two numerical operands and one of the binary
operators

== !=

Note the difference between the equality operator == and the assignment symbol =.
Like their numerical counterparts, Boolean expressions can be nested. This is

useful because conditions may be needed to express complex rules. Take for example
the rule that tells from the number y of a year whether its length is 365 or 366 days.
The rule can be expressed as

if ((y % 400) == 0) len = 366;
else if ((y % 100) == 0) len = 365;
else if ((y % 4) == 0) len = 366;
else len = 365;

7.4. EXPRESSIONS AND STATEMENTS 87

We can say more directly that a number is that of a leap year if it is divisible by
four unless it is a century year that is not divisible by four hundred. We can express
such a complex condition in a single Boolean expression by means of the Boolean
operations and, or, and not. These are denoted by the operators &&, ||, and !,
respectively. Thus we can rewrite the above nested if-statement as one that is not
nested, but instead has a nested Boolean expression in its condition:

if ((y % 400) == 0 ||
((y % 4) == 0 && (y % 100) != 0)
) len = 366;

else len = 365;

The Boolean operations are defined in Table 7.1.

x y x && y x || y ! x
false false false false true
false true false true true
true false false true false
true true true true false

Table 7.1: Definition of the Boolean operations && , ||, and !.

7.4 Expressions and statements

In its pure form, an expression is written to be evaluated: its value is obtained,
but the process of evaluation does not cause a change of state. A statement, in its
pure form, is the opposite: it is written to be executed rather than evaluated. The
process of execution does not yield a value, but typically causes the state to change.
The following line, which causes the decimal digits of n to be printed, contains
examples of both:

while (n) { printf("%d", n%10); n /= 10; }

The entire line is a pure statement. The text n%10 is a pure expression.
As the qualification “‘pure” in the above paragraph suggests, it is also possible

for an expression to change the state. Such an expression is said to have a side
effect. The text n /= 10 is an example of such an expression.

It is a rule in C that, whenever E is an expression,

E;

is a statement; it is called an expression statement. This only makes sense if E is
an expression with a side effect. If you would ever see the statement

x;

88 CHAPTER 7. EXPRESSIONS

it is a mistake, though it may be perfectly legal C (which it is, whenever x is a
variable). It is a mistake because it has no effect. Many function calls are expression
statements: they look like

f(...);

This need not be a mistake because the execution of f may have a desired effect on
an output parameter or on a global variable.

7.5 Increment and decrement operators

We first encountered n++ as a convenient shorthand for n = n+1. There is, however,
more to it. The symbol ++, introduced in Chapter 3, is a postfix operator: “postfix”
because it is written after the operand, which is the variable it acts on. Because
n++ is an operand-operator combination, it is an expression, and it has a value. It is
an expression whose evaluation has a side-effect, that of incrementing the operand.

The value of the expression n++ is the value of n before the ++ operator has
acted. One way to remember this is is to read n++ as “take value, then increment”.
This operator has a prefix counterpart, as in ++n, that is similar to the postfix
version, except that the value of ++n is the value of n after the increment.

Increment and decrement operators act on variables only. Moreover, these vari-
ables have to be of integral type. Thus (n++)++ is not a valid expression because
the outer increment attempts to act on a value rather than on a variable.

When an expression such as E1 + E2 is evaluated in C, the order of evaluation
is not defined; that is, it is not defined which of the two subexpressions is evaluated
first or whether they are evaluated in parallel. This implies that we have to be
careful with the use of increment and decrement operators. For example if n and m
have the values 1 and 2 respectively, the value of

++n + ++n*m

is not defined in C: it could be 7 or 8.

7.6 The assignment statement is an expression state-
ment

x = y;

is an expression statement. This is so because x = y is an expression. As such it
has a value. Every assignment expression has as value the value of the right-hand
side. This fact is often used. As an example, let us consider

i = j = 0

7.7. FUSED ASSIGNMENT OPERATORS 89

Because the assignment operator associates to the right, the meaning is that of
i = (j = 0). Because the value of an assignment statement is that of its right-
hand side, j = 0 evaluates to 0. As a result the effect of i = j = 0 is to set i and
j both to 0. Both i = j = 0 and j = 0 have a value, which is 0.

As another example, let us consider

while ((c = getchar()) != EOF) ...

where getchar is a function that returns the first character of some sequence of
characters or returns a non-character value EOF in case the sequence is empty. The
expression c = getchar() is evaluated for its effect: to make c equal to the next
character. The value of the expression c = getchar() is used to check whether
there is a next character.

In this example we see that the assignment statement is also an expression can
be useful. A disadvantage of this flexibility is that

if (x = y) { ...

cannot be flagged as an error, even though it usually is. It cannot be flagged as an
error because x = y evaluates to the value of y and the condition does not have to
be restricted to zero or one: any int is fine; all that matters is whether it is zero
or not. Therefore this line needs to be checked to see if it shouldn’t be

if (x == y) { ...

7.7 Fused assignment operators

As we noted, (x++)++ is not a correct statement or expression. But we do not have
to write x = x+2: we can shorten this to x += 2. We call += a fused assignment
operator because the + and the = are fused in a single operator.

For a simple left-hand side such as x this is not much of an improvement, though
it is commonly used in such a situation. The fused assignment operator is more
readily appreciated as an opportunity to simplify something like

incrTable[offset[prev + next]] = incrTable[offset[prev + next]] + 2;

to

incrTable[offset[prev + next]] += 2;

An expression of the form E1 op= E2 is equivalent to E1 = (E1) op (E2), except
that E1 is only evaluated once. Note the parentheses — otherwise we would know
neither the value nor the effect of something like x *= y+1.

E1 op= E2 makes sense for op equal to any of

- + * / % & | << >> ^

Indeed, all these operators can be fused with assignment.

90 CHAPTER 7. EXPRESSIONS

7.8 Conditional expressions

The value of any expression can be made to depend on the value of a Boolean
expression. Such an expression is called a conditional expression. For example,

(y%4 == 0) ? 366 : 365

has the value 366 or 365, depending on whether the value of y%4 == 0 is true or
false.

We can use conditional expressions to improve code such as the following.

int yearLen(int yr) {
int len;
if (yr%400 == 0) len = 366;
else if (yr%100 == 0) len = 365;
else if (yr%4 == 0) len = 366;
else len = 365;
return len;

}

The general form of a conditional expression is

expr0 ? expr1 : expr2

The rules for conditional expressions are simplest when expr1 and expr2 have values
of the same type. In that case, the entire conditional expression has that type. Cer-
tain variations in the types of expr1 and expr2 are allowed. For most programmers
this possibility is not important enough to warrant studying the rules.

With conditional expressions the above function simplifies to the following.

int yearLen(int yr) {
return
(yr%400 == 0) ? 366

: (yr%100 == 0) ? 365
: (yr%4 == 0) ? 366

: 365;
}

In this example abstinence from conditional expressions is bearable. This is not
the case with the following.

7.8.1 Example: OCR

OCR stands for “Optical Character Recognition”. It is software that takes as input
an array of pixels resulting from the scanning of a text document. It produces as
output the sequence of characters contained in the document.

This needs to be done in several stages. First the characters have to be isolated
in the image. For each character, features are extracted from the pixels. Recognition
occurs on the basis of the features found.

7.8. CONDITIONAL EXPRESSIONS 91

One can simplify the software and/or speed up recognition by limiting the style
of characters to be recognized. An extreme case would be to limit oneself to digits
and to require that the digits would be represented according to the seven-segment
display:

---a---
| |
f b
| |
---g---
| |
e c
| |
---d---

Each of the seven segments a, b, ..., g is a light-emitting device that can be
either switched on or not. For example, if all are switched on, the result is the digit
8. If we then switch off segments e and d, then we have the digit 9, sort of. In this
way each of the digits 0 through 9 can be recognized by which of the segments is
switched on. This requires a program to make the right selection among digits on
the basis of the seven conditions a, b, c, d, e, f, and g.

This is an example where it helps to write a decision table before coding with
ifs and elses. The decision table is the table on the left.

a b c d e f g action

1 1 1 1 1 1 0 0
0 1 1 0 0 0 0 1
1 1 0 1 1 0 1 2
1 1 1 1 0 0 1 3
0 1 1 0 0 1 1 4
1 0 1 1 0 1 1 5
0 0 1 1 1 1 1 6
1 1 1 0 0 0 0 7
1 1 1 1 1 1 1 8
1 1 1 0 0 1 1 9

d f e a b c g action

1 1 1 1 1 1 1 8
1 1 1 1 1 1 0 0
1 1 1 0 0 1 1 6
1 1 0 1 0 1 1 5
1 0 1 1 1 0 1 2
1 0 0 1 1 1 1 3
0 1 0 1 1 1 1 9
0 1 0 0 1 1 1 4
0 0 0 1 1 1 0 7
0 0 0 0 1 1 0 1

If we use the table on the left directly for translation to code, then the first test
would on a, the second on b, and so on. It would be better to test first on d because
its column has 6 ones and 4 zeros, which is more balanced than the 7 ones and 3
zeros in the column for a. Because of considerations like this we end up with the
ordering of columns shown in the table on the right.

In the table on the right not only the columns have been reordered, but the
rows also: they have been sorted into reverse alphabetical order. As a result we
can separate the top part of the table with a single test on d. Within that top
part we can separate the top part by a single test on f. In this way the table has
been arranged for a nested conditional expression that tests on a, b, ..., g in

92 CHAPTER 7. EXPRESSIONS

the order as they occur in the table on the right. One can now transcribe the table
into a conditional expression as in Program 7.1.

00 int digit(int a, int b, int c, int d, int e, int f, int g) {
02 // Purpose: return decimal digit on the seven-segment display
01 // Preconditions: all parameters are boolean values.
03 // if input valid; returns -1 otherwise.
04 return d ? f ? e ? a ? b ? (c ? (g ? 8 : 0) : -1)
05 : -1
06 : b ? -1
07 : (c ? (g ? 6 : -1) : -1)
08 : a ? b ? -1
09 : (c ? (g ? 5 : -1) : -1)
10 : -1
11 : e ? a ? b ? (c ? -1 : (g ? 2 : -1))
12 : -1
13 : -1
14 : a ? b ? (c ? (g ? 3 : -1) : -1)
15 : -1
16 : -1
17 : f ? e ? -1
18 : a ? b ? (c ? (g ? 9 : -1) : -1)
19 : -1
20 : b ? (c ? (g ? 4 : -1) : -1)
21 : -1
22 : e ? -1
23 : a ? b ? (c ? (g ? -1 : 7) : -1)
24 : -1
25 :(b ? (c ? (g ? -1 : 1) : -1) : -1)
26 ;
27 }

Figure 7.1: OCR: a function to recognize the digit on a seven-segment display.

7.9 Operations on bit vectors

Often the data that a computation acts on represent entities that exist outside
the computer: measurements, images, sounds, accounting data, text, . . . It is also
the case that much programming effort goes into compilers, operating systems, or
network protocols. In such programs it is common to regard the bits in memory
not as the representation of a number, but as bit vectors.

A bit is similar to a Boolean in that both have two possible values. In the case of

7.9. OPERATIONS ON BIT VECTORS 93

a bit these values are denoted as 0 and 1. As a result of this similarity, the Boolean
operations have analogous counterparts among the bit operations:

• the Boolean and with operator && is analogous to the bitwise and with operator
&

• the Boolean or with operator || is analogous to the bitwise or with operator
|

• the Boolean not with operator ! is analogous to the bitwise not (also called
complement) with operator ~

In addition, the bitwise operations include an exclusive or with operator ^.

x y x & y x | y x ^ y ~x
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 0

Table 7.2: Definition of the bitwise operations & , | , ^, and ~.

Note in the table that, for any bit value x, we have that x|0, x&1, and (x^y)^y
equal x. Also, x&0 equals 0, and x|1 equals 1, whatever the value of x. These
identities are displayed in Table 7.3.

x x|0 x&1 (x ^ y) ^ y x|1 x&0 x^x
0 0 0 0 1 0 0
1 1 1 1 1 0 0

Table 7.3: Formulas for important identities. The expressions heading the first
three columns are equal to x. The expressions heading the last three columns have
values 1 and 0 as indicated.

In C the bitwise operations act not on a single bit, as shown in the table, but
bit-by-bit on entire words. Accordingly, the parameters of the bitwise operators are
of type unsigned or int.

Examples of bitwise operations Common operations on a bit in a given posi-
tion in a bit vector include changing that bit to 1 (“setting the bit”), changing that
bit to 0 (“resetting, or clearing, the bit”), and finding out whether the selected bit
is 0 or 1 (“reading the bit”).

To perform these operations, we use a “mask”, an integer containing zeros ev-
erywhere and a one in the position where we want to set, reset, or read. We number
the bits of a four-byte unsigned integer so that 0 and 31 are the positions of the

94 CHAPTER 7. EXPRESSIONS

least and most significant bits, respectively. To set, reset, or read at position n the
mask m is 2n, which has zeros everywhere except at position n, for n = 0, . . . , 31.

We use this mask for the desired operations as follows.

• To set the bit b of integer x, at position n, we change b to b|1, which is 1
according to Table 7.3. We get b|0, which is the unchanged b, at the other
positions. That is, we change x to x|m.

• Similar reasoning tells us to reset the bit of integer x at position n by changing
x to x&~m.

• To read the bit at position n we test x&m. The result is either a bit vector of all
zeros or all zeros except for a 1 in position n. Which is the case is determined
by evaluating x&m == 0.

See Table 7.4 for an example.

position 3322 2222 2222 1111 1111 1100 0000 0000
position 1098 7654 3210 9876 5432 1098 7654 3210

^
m 0000 0000 0000 0000 0010 0000 0000 0000
x1 0011 0001 1010 1100 1010 0001 1011 1011
x2 0011 0001 1010 1100 1000 0001 1011 1011
x2|m 0011 0001 1010 1100 1010 0001 1011 1011 (set)
~m 1111 1111 1111 1111 1101 1111 1111 1111
x1&~m 0011 0001 1010 1100 1000 0001 1011 1011 (reset)
x1&m 0000 0000 0000 0000 0010 0000 0000 0000 (read)
x2&m 0000 0000 0000 0000 0000 0000 0000 0000 (read)

Table 7.4: Setting, resetting, and reading the bit at position 13. The two top lines
number the positions of a 32-bit word: read vertically from 3

1 on the left to 0
0 on

the right. The mask m has zeros everywhere except in position 13. Bit vectors x1
and x2 differ only in position 13.

Shift operations The bitwise operations in Table 7.2 are really operations on
single bits, and they are extended bit-by-bit to an entire bit vector. The shift
operators << and >> are also classified among the bitwise operators, but they only
make sense for an entire word. If v is a word, then v << n is the word where every
bit of v is shifted n positions to the left. The vacated bits, the n least significant
bits, are filled with zeros. Similarly v >> n shifts to the right. What the vacated
bits are filled with depends on the implementation. Thus shifting right is the less
useful operation. Integer divide by 2 is used instead if one needs to be assured of a
defined result for the most significant bits.

Program 7.2, Mask, is a useful tool, as it provides a mask of any size in any
position.

For an example of how masks are used, see Program 7.3, Copy Bits.

7.10. EXERCISES 95

00 #include <stdio.h>
01
02 unsigned mask(short p, short n) {
03 // Purpose: return mask with 1 in positions
04 // p through p+n-1 and 0 elsewhere
05 // Preconditions: 0 <= p and 0 <= n and p + n < b
06 // where b is the number of bits in type unsigned.
07 return (~((~0) << n)) << p;
08 }
09 int main() {
10 printf("%08x\n", mask(11, 9));
11 }

Output:

000ff800

Figure 7.2: Mask: returns mask of any size in any position.

7.10 Exercises

7.10.1 Nested less-than

In each row of Table 7.5, fill in the value of x < y < z.

x y z x < y < z

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Table 7.5: Enter the values in the last column.

7.10.2 Converting between upper and lower case

Change Program 4.2 so that each input character is changed to be output in the
opposite case.

7.10.3 Character packing

Write a program that inputs characters, packs them four to an integer (assume a
one-byte char and a four-byte int), and outputs the resulting integers.

96 CHAPTER 7. EXPRESSIONS

00 #include <stdio.h>
01 #include <assert.h>
02
03 unsigned mask(short p, short n);
04 void copyBits(short n, short p, unsigned x,
05 short q, unsigned* y) {
06 // Purpose: Copy n bits starting at position p in
07 // word x to position q in word y.
08 // Preconditions: 0 <= p,q,n,p+n-1,q+n-1 < b,
09 // where b is the number of bits in type unsigned.
10 unsigned rna = mask(p, n) & x;
11 // rna has bits p..p+n-1 from x and zero elsewhere.
12 // Shift rna to start nonzero bits at position q:
13 while (p<q) { rna *= 2; p++; }
14 while (p>q) { rna /= 2; p--; }
15 assert(p == q);
16 // rna shifted to start nonzero bits at position q
17 *y = *y & ~mask(q,n);
18 // recipient bit positions cleared
19 *y = *y | rna; // bits transferred to y
20 }
21 int main() {
22 unsigned x = 0x31acabbb, y = 0x9ac7b2bb;
23 copyBits(5, 7, x, 13, &y);
24 printf("%08x\n", y);
25 }

Output:

9ac6f2bb

Figure 7.3: Copy Bits: copy specified block of bits.

7.10.4 Unpacking characters

Write a program that inputs integers, which are assumed to contain four characters.
It unpacks them, and outputs the resulting characters.

7.10.5 IP addresses

IP addresses are bit vectors of length 32. To make these easier to handle by humans,
they are represented in dotted decimal notation: each group of four is written
separately as an unsigned decimal literal. For example:

Bit vector Equivalent dotted decimal

0x81340600 129.52.6.0
0xc0053003 192.5.48.3
0x0c020025 10.2.0.37
0x8080ff00 128.128.255.0

7.10. EXERCISES 97

Write a program that inputs an int (assume it’s four bytes) and outputs the equiv-
alent dotted decimal.

7.10.6 Weight of bit vector

Write a program that prompts the user to input an integer and that outputs the
number of 1’s in the bit vector representing this integer.

7.10.7 Weight of bit vector?

What does the following program do?

#include <stdio.h>

int main() {
int wt = 0;
int i; scanf("%d\n", &i);
while (i) { wt = wt + i%2; i = i/2; }
printf("%d\n", wt);

}

Discuss its merits as a solution for problem 7.10.6.

7.10.8 Mystery program

What does the following program do?

#include <stdio.h>

int main() {
int msk = 1, wt = 0, n = 0;
int i; scanf("%d\n", &i);
while (n < 32) {
wt = wt + (i&msk);
msk = msk << 1; n++;

}
printf("%d\n", wt);

}

7.10.9 Steganography

Encryption allows privacy in communication. It has the disadvantage that the
existence of the message is in the clear. Steganography is an attempt at hiding the
very existence of the message.

Digital images are an obvious medium for steganography. In images stored ac-
cording to the 32-bit True Color format, each pixel is represented as four consecutive

98 CHAPTER 7. EXPRESSIONS

one-byte fields. These are used for the intensities (starting with the least signifi-
cant byte) for blue, green, and red, followed by the Alpha byte, which represents
transparency.

Write a program that tests part of the code for a steganography method that
degrades a given image by storing a message in the least significant halves of the
fields of the pixels. The program is given an int p that stores a 32-bit pixel de-
scription and a short m with a size of 16 bits that contains part of a message. The
program places each of the successive four four-bit fields of m in the least significant
bits of the four fields of p, both in the order from less to more significant.

7.10.10 Circular shift

The type of shift effected by the operators << and >> can be called “linear”. In this
type of shift, bits disappear off one end, while a fixed choice of bit appears at the
other end. In a one-bit circular shift the bit that disappears at one end appears at
the opposite end.

Write a program that contains code that effects a one-bit circular shift where,
except for the most significant bit, each bit moves to the position of the next more
significant bit.

7.10.11 Endianity conversion

There are two ways to store numbers in a computer memory: the least significant
byte can have the lowest memory address or it can have the highest. If the pro-
cessor assumes the former alternative, it is said to be little-endian (little end first);
otherwise big-endian (big end first). The endianity of the processor indicates which
is the case.

For example, the unsigned 0xbaddecaf can be stored as

little-endian big-endian
address content content
12345 af ba
12346 ec dd
12347 dd ec
12348 ba af

Write a program that changes the endianity of an arbitrary (assumed four-byte)
unsigned input.

7.10.12 OCR

In Program 7.1 most of the work is to ensure that −1 is returned for an invalid
input. This entails corresponding effort in testing the function. Write and test a
program that tests the function in Program 7.1 on all 128 possible inputs. If you
have never written for-loops nested to a depth of seven, this is your opportunity.

Chapter 8

Control

Though not without limitations, computers are potentially enormously powerful.
This power derives to a large extent from the fact that the programs that control
them are typically more than mere to-do lists. Statements are often not executed
in the order they are written. Depending on conditions, they may be skipped or
repeated or retrieved from function bodies. The general topic of what gets executed
or evaluated next is called control. The following sections treat the various aspects
of control.

8.1 Compound statements

Long, unstructured lists of simple statements can usually be improved by identifying
a small set of them that are related by having a common purpose and by using
variables not needed elsewhere. The improvement then consists in making these
statements into a compound statement, also called block. It usually has the form

{ declarations statements }

although declarations can also occur after one or more statements. The declarations
create variables that only occur in statements. In this way we take a step towards
locality, one of the goals to be aimed at in structuring a program. This goal is to
create variables shortly before they are first used and to make them disappear as
soon as they are no longer needed.

Suppose for example that we introduce a variable for the sole purpose of ex-
changing the values of two other variables, as in:

{ int x, y, temp;
...
temp = x; x = y; y = temp;
...

}

In such a situation we can improve program structure by writing instead:

99

100 CHAPTER 8. CONTROL

{ int x, y;
...
{ int temp = x; x = y; y = temp; }
...

}

In this way, temp only exists where needed.

8.2 Two-way decisions

As we saw in Section 3.4, during execution of a program a decision can be made
according to the value of a condition being true or false. In an if-else statement a
choice is made between two statements. Each of these can be any kind of statement,
including an if-else statement. Thus such statements can be nested to any depth.

The need for such complex decisions often arises in practice. It requires consid-
erable care to ensure that the code executes according to the specification. Several
formalisms have been developed for writing such specifications. These include deci-
sion tables, decision trees, and flowcharts. Because they often get so complex that
they are difficult to translate to code, software exists to automate this translation.

If-statements and if-else statements are so easy to get wrong that it is important
to keep them simple. As soon as they are not, then one should use some form of
table or tree to specify the decisions and translate these systematically to executable
statements.

In Section 8.2.1 we saw a potential trap to be watched out for with nested ifs
and elses. In a statement of the form

if (C1) if (C2) S1a else S1b

we have to know which of the ifs matches the else. One of the ways this can be
answered is by means of a decision table:

C1 C2 action

1 1 S1a
1 0 S1b
0 1 nil
0 0 nil

Here 1 stands for true and 0 stands for false. When C1 is false, the execution of both
S1a and S1b is skipped and the entire statement has no effect. This is indicated by
the action nil.

If we want the else to match the first if, then we write

if (C1) {if (C2) S1a} else S1b

This statement has as decision table

8.2. TWO-WAY DECISIONS 101

C1 C2 action

1 1 S1a
1 0 nil
0 1 S1b
0 0 S1b

8.2.1 The counterfeit coin

In this section we write a program that solves the problem of the counterfeit coin,
one that I will explain presently. The reason for bringing the problem up now is
that it demonstrates a more complex kind of selection than what we have seen so
far.

Recall that in
if (C) S

S can be any statement whatsoever. For example, it can be an if-else statement.
This way you get the structure:

if (C0) if (C1) S01 else S1

The else goes with the second if. But if we want the else to go with the first if, then
we need to force this by using braces:

if (C0) {if (C1) S1} else S0

Background Three-sort is so simple that one can hardly go wrong in the choice
of comparisons to make and the order in which to make them. When sorting large
sequences it matters a great deal at each stage what comparison to make. A policy
that leads to good choices can result in vast performance differences.

Another example where efficiency depends on a good choice of comparison to
make is the problem of the counterfeit coin. The problem is the following.

Suppose you have nine coins that all look the same. All but one are
genuine, and have equal weight. The counterfeit coin is lighter. A bal-
ance is available with two trays. All it can do is compare the weights of
the contents of the two trays. The comparison can have three outcomes:
equal weights, left tray lighter, or right tray lighter.

Find a sequence of weighings that identifies the counterfeit coin.

Specification The program reads in nine numbers. All are equal, except one,
which is smaller. The program prints one of the words ‘one’, . . ., ‘nine’ to indicate
which of the nine input numbers is the small one. The only allowable operation is
to compare sums of non-overlapping subsets of the nine numbers.

102 CHAPTER 8. CONTROL

Method Weighings should be arranged so that each divides the number of possi-
bilities as much as possible into two equal halves. This rules out comparing single
coins. At the other extreme, putting four coins on each tray leaves too many pos-
sibilities in the likely event that their weights are unequal.

Putting three coins on each tray strikes a good balance between these extremes.
In the case of equal weights, the remaining three are identified as harbouring the
culprit. Otherwise, we again have narrowed down the counterfeit coin to the set of
three on the lighter tray. Either way, the second weighing gives the answer.

As each weighing has three possible outcomes, and as we need to identify one
out of nine possibilities, we should not expect to be able to solve the problem with
fewer than two weighings.

Pseudo code The weighing plan described above translates to the following
nested selection statement.

if w1 + w2 + w3 < w4 + w5 + w6

(w1 or w2 or w3 lighter)
else if w1 + w2 + w3 > w4 + w5 + w6

(w4 or w5 or w6 lighter)
else

(w7 or w8 or w9 lighter)

The comments indicate the place for a similar nested statement for the second
weighing. Whatever the outcome, no more than two conditions are evaluated.

Implementation See Program 8.1, Counterfeit Coin.

Running the program Suppose the coins are Kruger Rands, with a true weight
of one ounce. Suppose the third coin is underweight at 0.95 oz. That suggests the
following interaction:

Input nine weights; all equal except one, which is less:
1.0 1.0 0.95 1.0 1.0 1.0 1.0 1.0 1.0

The rank of the light weight: three

8.3 Multi-way decisions

In Table 8.1 you see a common form of multi-way decision. The only way to imple-
ment such a table seems to be by splitting the multi-way decision into a chain of
binary decisions, as shown in Program 8.2.

The following table could be translated in the same way. But because the
decision is on a single value rather than on a range of values, we can use the switch
statement, which is designed for such simple multi-way decisions. With a switch
statement, the table could be translated as shown in Program 8.3: Celebrities.

In general, a switch statement has the form

8.3. MULTI-WAY DECISIONS 103

00 #include <stdio.h>
01
02 int main() {
03 printf("Input nine weights; all equal except one, ");
04 printf("which is less:\n");
05 double w1, w2, w3, w4, w5, w6, w7, w8, w9;
06 scanf("%lf %lf %lf %lf %lf %lf %lf %lf %lf",
07 &w1,&w2,&w3,&w4,&w5,&w6,&w7,&w8,&w9);
08
09 printf("The rank of the light weight: ");
10 if ((w1+w2+w3) < (w4+w5+w6)) {
11 //w1 or w2 or w3
12 if (w1 < w2) printf("one");
13 else if (w1 > w2) printf("two");
14 else printf("three");
15 } else if ((w1+w2+w3) > (w4+w5+w6)) {
16 //w4 or w5 or w6
17 if (w4 < w5) printf("four");
18 else if (w4 > w5) printf("five");
19 else printf("six");
20 } else // w7 or w8 or w9
21 if (w7 < w8) printf("seven");
22 else if (w7 > w8) printf("eight");
23 else printf("nine");
24 printf("\n");
25 }

Figure 8.1: Counterfeit Coin: perform two tests and identify the underweight one
among nine coins.

income x tax on income x
0 ≤ x ≤ 37178 0.155x

37178 < x ≤ 74357 5763 + 0.22(x− 37178)
74357 < x ≤ 120887 13942 + 0.26(x− 74357)

120887 < x 26040 + 0.29(x− 120887)

Table 8.1: A table for income tax.

switch (expression) statement

Here, statement generally has the form of a compound statement in the form of a
list of labeled statements. In a switch statement, the labeled statement has one of

104 CHAPTER 8. CONTROL

0 double tax(double x) {
1 // Purpose: return income tax according to table.
2 // Preconditions: x is non-negative.
3
4 if (x <= 37718) return 0.155*x;
5 else if (x <= 74357) return 5763 + 0.22*(x-37178);
6 else if (x <= 120887) return 13942 + 0.26*(x-74357);
7 else return 26040 + 0.29*(x-120887);
8 }

Figure 8.2: Tax Time: a function that computes income tax according to Table 8.1.

extension name
5764 Colmerauer
5723 Kay
5727 Landin
5768 McCarthy
5719 Milner

Table 8.2: Telephone extensions of selected celebrities.

the following forms:

case constant-expression : statements
default : statements

The default statement, if any, occurs once and after all the case statements.
The switch statement is executed by evaluating expression and then executing

statement starting at the first case statement, if any, where the value of the case
equals that of the expression just evaluated. If the value of this expression is not
equal to any of the constant-expressions in the case statements, then the default
statement is executed, if present. If no default statement is present, then the switch
statement is null.

The break statement causes control to be transferred to the statement following
the switch statement. This statement is essential if one wants the switch statement
to execute exactly one of the cases. In the absence of break statements the selected
statement as well as all statements following in the switch statement are executed.

It is a common mistake to omit break statements. But their absence can be
useful, as the following example shows.

8.3.1 Example: counting characters, words, and lines

Background An often-needed utility is the one that reports the numbers of char-
acters, words, and lines in a text file. A space can separate two words, and so can

8.3. MULTI-WAY DECISIONS 105

00 #include <stdio.h>
01
02 void listing(int extension) {
03 // Purpose: looks up and print according to given table.
04 // Preconditions: none.
05 switch (extension) {
06 case 5764: printf("Colmerauer\n"); break;
07 case 5723: printf("Kay\n"); break;
08 case 5727: printf("Landin\n"); break;
09 case 5768: printf("McCarthy\n"); break;
10 case 5719: printf("Milner\n"); break;
11 default: printf("No Listing\n");
12 }
13 }
14 int main() {
15 int extension; scanf("%d", &extension);
16 listing(extension);
17 }

Figure 8.3: Celebrities, a program to translate telephone extensions to names of
owners.

a tab character (\t). However, to count the number of word separators one cannot
just count the number of space and tab characters in the file, as any contiguous
sequence of space or tab characters also acts as a single word separator.

On this most utilities agree. There is a well-known one that counts every single
new-line character (\n) as a line separator. Apparently it regards a line followed
by a sequence of ten (\n)’s as containing ten lines, of which nine are empty. This
example is how to write a function that computes the number characters, words,
and lines in a text file, while correctly avoiding to count empty lines.

Specification It is required to write a function that reads a file as standard input
and prints the number of characters, words, and lines in the file. A line is defined
as a sequence of at least one character that does not contain a new-line symbol and
cannot be extended without losing this property. Similarly, a word is defined as a
sequence of at least one character that does not contain a space, a tab, or a new-line
symbol and cannot be extended without losing this property.

Method We use a finite-state automaton as starting point. This is a device that
receives inputs and performs actions on the basis of these inputs. The device is not
merely a translator from each of a set of inputs to the corresponding action. For a
given input, the resulting action depends on the state the device is in. That state
depends on past inputs.

106 CHAPTER 8. CONTROL

A particularly simple example is a toggle switch. When you press the button,
it can have the effect of the light going on or going off. Which of these happens
depends on the state it is in (being off or on). A vending machine is another example
of a machine with state. Pushing the dispense button may or may not have the
desired effect, depending on the state the machine is in.

The program that counts lines, words and characters can be built as a finite-
state automaton with the characters of the file as inputs. The action taken as a
result of receiving a word character as input has to depend on the state it is in:
sometimes the word counter is incremented, but not every time. Roughly speaking,
the action to be taken by the counting program depends not only on the character
being read, but also on whether the character is in a word, is between words, or is
between lines. Let us name these states and define them.

• The red state is the one in which the last character read is the new-line symbol
’\n’. We are also in this state if we attempted to read a character and none
was found.

• The amber state is the one in which the last character read is part of a line,
but not of a word.

• The green state is the one in which the last character read is part of a word.

Pseudo code Instead of pseudo code in the usual format, we give the program’s
skeleton in the form of the following transition table for the finite-state machine.
The table specifies for each state the action to be taken, depending on the last
character read.

current state current character next state
red ’\n’ red
red ’ ’ or ’\t’ amber
red word character green
amber ’\n’ red
amber ’ ’ or ’\t’ amber
amber word character green
green ’\n’ red
green ’ ’ or ’\t’ amber
green word character green

Implementation To translate this table to code means to decide which line ap-
plies, depending on the state and the last character. If we have the state as the
value of a variable, it is natural to use a switch statement on that variable. Within
this state, a multi-way decision needs to be made on the last character read. Again,
a natural for a switch statement. This suggests a nested switch statement.

However, here we have another new wrinkle: more characters than one require
the same action. The fact that there are many word characters suggests that these
are handled by a default statement. What do we do about the fact that both space
and tab require the same action? We could of course ignore this commonality and

8.4. ITERATION STATEMENTS 107

give each of these possibilities its own complete case statement. Notice how, in Pro-
gram 8.5, this is more succinctly solved by merely omitting some break statements.
Every call of the function int getch(int *nc) returns the next character read
from the input, or EOF to indicate the end of input. In the first case it increments
its actual parameter variable to indicate that a character has been read.

#include <stdio.h>

int getch(int *nc);
// Purpose: if standard input is at end of file, return EOF;
// otherwise, increment nc.
void linWrdChar(int *nl // number of lines

, int *nw // number of words
, int *nc); // number of characters

// Purpose: count number of lines, words, and characters
// from standard input.
// Preconditions: None.

int main() {
int nl = 0, nw = 0, nc = 0;
linWrdChar(&nl, &nw, &nc);
printf("%d %d %d\n", nl, nw, nc);

}

Figure 8.4: Lines, Words, and Characters, a program to analyze a text file. See
Program 8.5 for definitions of the auxiliary functions.

A more extreme example is in Program 8.6: V-D-O. With input

abc1dfegh2jkilm3npoqr4stuvw5xy

it gives as output

voodoovoodoovoodoovoodoovoodoo

8.4 Iteration statements

Iteration statements cause code to be repeatedly executed under control of a con-
dition. There are three forms of iteration statement: the while statement, the do
. . . while statement, and the for statement.

The first of these is sufficiently familiar.
The second can be characterized by the fact that

do statement while (expr);

108 CHAPTER 8. CONTROL

is equivalent to

statement while (expr) statement

The do . . . while can be replaced by the while. The former is preferred when one
wants to document that the controlled statement is executed at least once. In that
case the while statement performs an unnecessary test.

The general form of the for statement is

for (expr1 ; expr2 ; expr3) statement

It is equivalent to

{ expr1 ;
while (expr2) {

statement
expr3 ;

}
}

Not all parts of the for statement need occur. Suppose we want to replace
positive p and q by their greatest common denominator. This can be done by

for(; p != q;)
if (p<q) q -= p;
else
if (q<p) p -= q;

There is no initialization because we assume that p and q already have their right
values. There is no increment or decrement, as the required changes to p and q are
not naturally expressed this way.

As an extreme example,

while ((c = getchar()) != EOF) putchar(c);

is sometimes written as:

for (;;) {
if ((c = getchar()) == EOF) break;
putchar(c);

}

8.4. ITERATION STATEMENTS 109

#include <stdio.h>
typedef enum {red, amber, green} State;

int getch(int *nc) {
// Purpose: if standard input is at end of file, return EOF;
// otherwise, increment nc.
int c = getc(stdin);
if (c != EOF) (*nc)++;
return c;

}
void linWrdChar(int *nl, int *nw, int *nc) {
// Purpose: count number of lines, words, and characters
// from standard input.
// Preconditions: None.
State s = red; int c;
while ((c = getch(nc)) != EOF) {
switch (s) {
case red:

switch (c) {
case ’\n’: break;
case ’\t’: case ’ ’: (*nl)++; s = amber; break;
default: (*nl)++; (*nw)++; s = green;

} break;
case amber:
switch (c) {
case ’\n’: s = red; break;
case ’\t’: case ’ ’: break;
default: (*nw)++; s = green;

} break;
case green:
switch (c) {
case ’\n’: s = red; break;
case ’\t’: case ’ ’: s = amber; break;

} } } }

Figure 8.5: Finite-State Automaton, a function to count the number of lines, words,
and characters in a text file.

110 CHAPTER 8. CONTROL

#include <stdio.h>
void processVowel(char ch) { printf("v"); }
void processDigit(char ch) { printf("d"); }
void processOther(char ch) { printf("o"); }
int main() {
int ch;
while ((ch = getchar()) != EOF) {
switch (ch) {
case ’a’: case ’e’: case ’i’: case ’o’: case ’u’:
processVowel(ch); break;

case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:
processDigit(ch); break;

default: processOther(ch);
} }
printf("\n");

}

Figure 8.6: V-D-O, a program to illustrate stacked-up cases in a switch statement.

8.5. GREATEST COMMON DIVISOR 111

8.5 Greatest common divisor

Background One of the oldest algorithms is the one by Euclid for computing
the greatest common divisor (GCD) of two positive integers. It is a remarkable
algorithm. At first sight it may seem to be necessary to find the prime factors of p
and q. When we know these, we can see which are in common, and their product is
gcd(p, q). We will see that the GCD can be found without ferreting out any prime
factors; even without performing any divisions.

Examples For any x and y we have that gcd(x, y) = gcd(y, x); for any x it is
true that gcd(x, x) = x. Pick arbitrary x and y and you have a good chance that
that their GCD is 1; e.g. gcd(1001, 10001) = 1. But sometimes a surprisingly large
common divisor is hidden, as the pair (1001, 637).

Specification Input: two positive integers x and y. Output: gcd(x, y).

Method If x = y, then nothing needs to be done to solve the problem. Otherwise
one of x and y is greater; suppose it is x. We reduce the problem to one that is
easier to solve by using the fact that gcd(x, y) = gcd(x − y, y). It is easier to find
gcd(x− y, y) when the greater of x− y and y is less than the greater of x and y.

To compute gcd(x, y), the GCD of x and y, we keep subtracting the smaller one
from the larger until the two are equal. If x and y are equal already, then we don’t
have anything to do.

For example, the algorithm determines gcd(34, 26) = 2 by the steps shown in
Table 8.3. The algorithm takes seven steps to complete. Every column shows one of
these steps. In every column the smallest number of the previous column is repeated
and the largest number of the previous column is replaced by the difference of the
two.

step # 0 1 2 3 4 5 6 7
x 34 8 8 8 8 6 4 2
y 26 26 18 10 2 2 2 2

Table 8.3: Trace of Euclid’s algorithm to find the gcd of 34 and 26.

Pseudo code

while x 6= y
if x < y then y ← y − x
else x← x− y

print x

112 CHAPTER 8. CONTROL

Implementation See Program 18.2, Iterative Euclid.

0 int gcd(int x, int y) {
1 // Purpose: return the greatest common denominator of x and y.
2 // Preconditions: x and y are positive integers.
3 while (x != y)
4 if (x < y) y = y-x; else x = x-y;
5 return x;
6 }

Figure 8.7: Iterative Euclid: compute the greatest common denominator.

8.6 Example: Pythagorean triples

It is common for loops to be nested. For example the statement controlled by a for-
statement can be a for-statement. Suppose we want to find Pythagorean triples.
These are triples of natural numbers such that the square of third is the sum of the
squares of the first two. The most familiar example consists of 3, 4 and 5. If we
construct a triangle with these numbers as the lengths of the sides, then the triangle
has a right angle, so that the theorem of Pythagoras applies. Hence the name.

As an example, consider a function that takes as input a positive integer N and
prints all triples of positive integers x, y, and z such that x2 + y2 = z2 and z < N .
For N = 20 we should get the triples 〈3, 4, 5〉, 〈6, 8, 10〉, 〈5, 12, 13〉, 〈9, 12, 15〉, and
〈8, 15, 17〉.

A brute-force way of find such numbers is to try all triples up to a certain limit.
A natural way to do this is to use a for statement to let z run through all candidate
values, for each of these let x and y run through all candidate values. That is, a for
statement for y inside one for x and those two inside the one for z. See Program 8.8:
Pythagoras.

8.7. THE COMMA OPERATOR 113

00 #include <stdio.h>
01
02 void triples(int N) {
03 // Purpose: print all Pythagorean triples <x,y,z> with z < N.
04 // Preconditions: N is positive.
05 for(int z = 1; z < N; z++)
06 for(int x = 1; x < z; x++)
07 for(int y = 1; y < x; y++)
08 if (x*x + y*y == z*z)
09 printf("%d^2 + %d^2 = %d^2\n", x, y, z);
10 }
11 int main() {
12 printf("Input a positive integer.\n");
13 int N; scanf("%d", &N);
14 triples(N);
15 }

Figure 8.8: Pythagoras, a program that prints Pythagorean triples.

8.7 The comma operator

If E1 is an expression and if E2 is an assignment expression, then E1, E2 is an
expression. The operator of this expression is the comma operator.

The value of the expression is the result of evaluating E2 after the evaluation
of E1 is completed. This may be puzzling, as the value of E1 is discarded. Yet the
comma operator has its uses.

The comma operator can be useful in a situation where we want to execute
two statements but there is only place for one. This happens for example in for
statements:

void reverse(int a[], int n) {
int p, q;
for (p = 0, q = n-1; p < q; p++, q--) {
int temp = a[p]; a[p] = a[q]; a[q] = temp;

}
}

In many situations semicolons separating statements can be replaced by commas.
This can be used as a way to emphasize that the statements belong together. In
this way we would rewrite the swap of values of two variables from

temp = x; x = y; y = temp;

to

114 CHAPTER 8. CONTROL

temp = x, x = y, y = temp;

As a final example of the comma operator, consider the function main in Pro-
gram 8.5. In a more realistic context, the variables nc, nw, and nl are global and
are used to communicate between different functions. Then we cannot be assured
that they have been correctly initialized when linWrdChar is called. The comma
operator allows the initialization to occur in the call:

linWrdChar((nl=0,&nl), (nw=0,&nw), (nc=0,&nc));

The commas separating the parameters have nothing to do with the comma oper-
ator.

8.8 The function as control mechanism

Background As the annual revolution of Earth around the sun takes 365.2422
days on average, any system of time reckoning has to alternate 365 (for “normal”
years) with 366 (for leap years) as the number of days in a year. About twenty
centuries ago, Julius Caesar introduced what is now known as the “Julian calen-
dar”, which determines the length of years as follows. Normal years are 365 days.
Whenever the year number is divisible by four, there is a leap year. This gives an
average length of year of 365.25 days, which is too long by

365.25− 365.2422 = 0.0078,

which is about three quarters of a day per century.
The discrepancy was corrected by the Gregorian calendar, first introduced in cer-

tain jurisdictions in the sixteenth century. Now it is used worldwide. The Gregorian
calendar follows the Julian calendar except in century years. In the Gregorian cal-
endar, normal century years have 365 days. The exceptions are leap-century years,
which occur when the year number is divisible by 400.

This gives a cycle of 400 years with a total of 146,097 days, making the average
length of the year over a cycle 365.2425 days. As the average length of the year is
365.2422, this leaves a discrepancy of 3 days in 10,000 years.

Specification The program reads an integer equal to a year number and prints
its number of days according to the Gregorian calendar.

Method As we have to test the year number for three conditions, we need a
nested if-else statement. In

if (C) S0 else S1

both S0 and S1 can be selection statements. Such substitutions can be made to
any depth. The resulting constructs may become difficult to understand. A good
strategy for complex decisions is to keep S0 a simple statement and only replace S1

8.9. JUMP STATEMENTS 115

by a selection statement. Here we have a complex decision: leap years are exceptions
to normal years, normal century years are an exception to that exception, while
every fourth century year is an exception to an exception to an exception. Can we
keep this simple?

This question translates to: Is there a single condition that tells us the length
of some year? This is not the case if we only know that the year number is divisible
by four or by a hundred. But if we ask whether it is divisible by 400, then we know
the year length, if the answer is Yes. Otherwise, we know that we do not have a
leap-century year, and we have a less complex problem. In this latter case there is
again a single condition with the same favourable property.

Pseudo-code

input year number y
if y is divisible by 400 then print 366 and halt

(y is not divisible by 400)
if y is divisible by 100 then print 365 and halt

(y is not divisible by 100)
if y is divisible by 4 then print 366 and halt

(y is not divisible by 4)
print 365 and halt

Implementation See Program 8.9, Leap Year.

int yearLen(int y) {
if ((y % 400) == 0) return 366;
if ((y % 100) == 0) return 365;
if ((y % 4) == 0) return 366;
return 365;

}

Figure 8.9: Leap Year, a function to compute the length of any year with non-
negative number y.

8.9 Jump statements

Selection statements affect control flow because they are replaced by one of their
constituent statements under control of a condition. Iteration statements affect
control flow because they are replaced by a repetition, under control of a condition,
of suitably modified instances of their body. In neither case is there an explicit
transfer of control.

To transfer control explicitly, C has four jump statements: return, break,
continue, and goto.

116 CHAPTER 8. CONTROL

8.9.1 Return

We already encountered the return as soon as we used functions. What still needs
to be done is to point out a common weakness in code resulting from not realizing
the full power of this statement. This weakness is exemplified by the first version
in Section 8.8. This function is more clearly and more succinctly written as in the
second version in that section.

In many functions this is an effective strategy: Isolate the simplest part of the
function’s task, do it, and get out. Repeat with the remaining part of the task.

8.9.2 Break

We already encountered the break in connection with the switch statement. The
effect of break is to transfer control to immediately past the closest surrounding
switch or iteration statement.

In an iteration statement, the condition normally determines when the loop
terminates. Often, however, there is more than one such condition. Consider for
example a program that copies a line:

void copyLine() {
char c;
while ((c = getchar()) != EOF && c != ’\n’)
putchar(c);

putchar(’\n’);
}

Here it is essential that what’s on the left of the && gets evaluated before the
part on the right. This is only so because of an exception, “short-circuit condition
evaluation”, to the general rule that the order in which the subexpressions of an
expression are evaluated is not defined.

It is worth knowing another approach to the problem of terminating a loop on
multiple conditions. This other approach uses the break statement, and that is
why it is introduced here.

void copyLine() {
char c;
while ((c = getchar()) != EOF) {
if (c == ’\n’) break;
putchar(c);

}
putchar(’\n’);

}

In this function it is clearer than before that the comparison with ’\n’ comes
after the test for EOF.

8.9. JUMP STATEMENTS 117

8.9.3 Continue

The next jump statement is similar to break in that it modifies the behaviour of
an iteration statement. It is called continue. Its effect is to transfer control to the
end of the body of the iteration statement. Thus it skips only to the end of the
current iteration without terminating the iteration statement, which is what break
does. Here is an example

float addFile() {
double x, sum = 0.0;
while (scanf("%lf", &x) == 1) {
if (x <= 0) continue; // only add positive numbers
sum += x;

}
return sum;

}

You will see continue used less often than break, as the same effect can be more
easily achieved by an if statement. An attraction of continue is that it avoids the
need to indent the rest of the body of the iteration statement, which can be a long
piece of code.

8.9.4 Goto

The final type of jump statement is the goto statement, which has the following
form:

goto identifier;

This statement can occur if there is in the same function, outside of a switch state-
ment, a labeled statement that has as label the one that is named by identifier.

The break- and continue statements can be viewed as specialized versions of the
goto statement that transfer to a specific place. Because that place is determined
by the location of the break- or continue statement, there does not need to be a
labeled statement.

The above example of a break statement can be written with a goto as follows:

void copyLine() {
char c;
while ((c = getchar()) != EOF) {
if (c == ’\n’) goto L;
putchar(c);

}
L: putchar(’\n’);

}

For the goto equivalent of the above example of a continue statement, we only
have to look at the while statement, which becomes:

118 CHAPTER 8. CONTROL

float addFile() {
double x, sum = 0.0;
while (scanf("%lf", &x) == 1) {
if (x <= 0) goto L; // only add positive numbers
sum += x;
L:;

}
return sum;

}

Notice that the statement labeled with L to which control transfers need not do
anything. In fact, it must not do anything. Hence, what is labeled in

L:;

is the statement

;

This is the empty statement.
Clearly, goto statements can be used to implement the equivalent of iteration

statements. But goto statements are not restricted this way. In fact, they are a
versatile way of expressing any pattern of transfer of control. Some of these patterns
have a name, such as while, for, and switch. There is no need to implement such a
pattern with goto statements; use instead a while, a do-while, a for statement, or a
switch.

8.10 Exercises

8.10.1 Counterfeit among ten coins

Modify Program 8.1 to detect a single underweight coin from among ten coins.

Chapter 9

Arrays and strings

There’s more to arrays than what we saw of them in Chapter 3. Here I explain
how to pass array data into and out of functions, the relations between arrays and
pointers, and how to work with multi-dimensional arrays. Strings are a special kind
of array, and so important that C accords them special status.

9.1 Arrays as sequences of variables

Consider the definition int A[n]. It defines an integer array of length n, a sequence
A[0], . . ., A[n-1] of n integer variables stored contiguously in memory. Each of the
n variables has an address. The address of A[0] is the address of the array A. This
is not just figuratively speaking; it is literally the case: the array identifier A has the
type of pointer-to-integer. Thus A[1], A[2], A[3], are the same integer variables as
*(A+1), *(A+2), and *(A+3). By the same logic, A[0], is the same integer variable
as *A.

But, you may object, isn’t it the case that the next address after a is a + 1?
Assuming that integers occupy four bytes in memory, the address of A[1] should be
A+4 rather than A+1. The objection is understandable and shows that the situation
is not quite as simple as just suggested, though more convenient for the programmer.

C allows for the possibility that integers have a size other than four bytes.
The address calculation has to be adjusted accordingly. The address calculation
does not need to be left to the programmer because the C compiler knows that *A
has type pointer-to-integer and knows how many bytes there are to an integer on
this machine. For that reason C defines that *(A+n) to be the n-th element of A
independently of the size of the array elements.

Subtracting addresses that are far from each other can result in a large integer.
If such a result is to be stored in a variable, what should its type be? Usually
unsigned or even int suffices. But whether this is actually the case depends on the
implementation of the C language. To make sure enough storage is allocated for
such a variable, its type should be made ptrdiff_t, a type specifically introduced
for this purpose.

119

120 CHAPTER 9. ARRAYS AND STRINGS

00 #include <stdio.h>
01 #include <assert.h>
02
03 int main(){
04 int a0[] = {0,31,28,31,30,31,30,31,31,30,31,30};
05 short a1[] = {0,31,28,31,30,31,30,31,31,30,31,30};
06 int len = sizeof(a0)/sizeof(a0[0]);
07 assert(&a1[len-1] - &a1[0] == len-1);
08
09 printf("%p %p\n%p %p\n",
10 (void*)&a0[0],(void*)&a0[1],
11 (void*)&a1[0],(void*)&a1[1]);
12 }

Output:

0x7fff56490b60 0x7fff56490b64
0x7fff56490b40 0x7fff56490b42

Figure 9.1: A program to illustrate array basics.

9.2 Arrays as function parameters

The programs so far were in a style that could be called “array-oriented”. The fact
that array elements can be accessed by means of pointers give rise to the “pointer-
oriented” style of programming preferred by many programmers. As a result even
those who prefer to write in the array-oriented style, read a lot of pointer-oriented
code. See Program 9.2 Array Copy for both array-oriented and pointer-oriented
versions.

You may wonder why we supply both the name of the array and its length as
actual parameters to function calls that act on an array. Can’t we determine that
length by the expression

sizeof(a)/sizeof(a[0]).

This only works in the block where the array is defined. In the function body
sizeof(a) returns the size of a as a pointer rather than as an array.

Both copy0 and copy1 have as purpose to copy b[0..n-1] into a[0..n-1]. Both
have as precondition that a[0..n-1], b[0..n-1], and c[0..n-1] be allocated. To
say that a[p..q] is allocated means that this sequence of variables is part of memory
allocated to an array. They do not have to be all of an array. For example, in Array
Copy we can add a function call

copy0(c+n-n/2, a, n/2);

to copy the first half of a[0..n-1] to the second half of c[0..n-1].

9.3. STRINGS 121

00 #include <stdio.h>
01
02 void copy0(int a[], int b[], int n) {
03 for(int i = 0; i < n; i++) a[i] = b[i];
04 }
05 void copy1(int *a, int *b, int n) {
06 for(int i = 0; i < n; i++) *a++ = *b++;
07 }
08 int main() {
09 int a[] = {0,1,2,3,4,5,6,7,8,9},
10 n = sizeof(a)/sizeof(a[0]),
11 b[n], c[n]; // same size as a
12 int *ap = a, *bp = b, *cp = c;
13 copy0(b, a, n);
14 // copy0(bp, ap, n); // works as well
15 copy1(c, a, n);
16 // copy1(cp, ap, n); // works as well
17 for(int i = 0; i < n; i++)
18 printf("%d %d, ", i, b[i] == c[i]);
19 printf("\n");
20 copy0(c+n-n/2, a, n/2);
21 for(int i = 0; i < n; i++)
22 printf("%d %d, ", i, c[i]);
23 printf("\n");
24 }

Figure 9.2: Array Copy, array-oriented and pointer-oriented versions of a function
that copies one array to another.

9.3 Strings

The reasons for having arrays of numbers, or arrays of arrays of numbers, is that we
want to represent n-dimensional vectors as used in science and engineering, or rows
and columns of financial data. A kind of data that occurs in all types of computer
application is text. Text can be regarded as a array of characters. In programming
such arrays are called “strings”. C provides string literals, written as sequences of
characters between double quotes:

"This is a string."

9.3.1 Character arrays versus strings

Why do we need “string” as a separate concept when arrays can have characters as
elements? The answer is that, though strings are indeed such arrays, a distinction

122 CHAPTER 9. ARRAYS AND STRINGS

needs to be made.
To understand the distinction, let us consider the two ways of specifying the

length of a sequence: extrinsic and intrinsic. In the extrinsic method, there is an
integer, independent of the sequence, that gives the length. In the intrinsic method,
there is a designated value, the sentinel, that does not occur in the sequence. Ac-
cordingly, if we store the sequence in an array or file, then the first occurrence of
the sentinel value can be used to signal the end of the sequence.

If we do not want to reserve a value for the exclusive use as a sentinel, then we
need to use the extrinsic method. This is why, so far, our functions that act on
arrays have had separate parameters for the array and for its length.

There are types of data where we don’t need to allow for all possible values. The
excluded values are candidates for playing the role of sentinel and we can use the
intrinsic method for sequence representation. Examples:

• An important class of data are nonnegative numbers. In this case there are
plenty of sentinel candidates. Conventionally, one uses −1.

• Memory addresses have plenty of excluded values, reflecting the fact that the
operating system does not allow user programs to access all of memory. A
null pointer is a pointer variable that has an excluded address as value. If we
want to store a sequence of addresses, then it is natural to use a null pointer
to indicate the end of the sequence.

• ASCII text has the property of not containing the character code 0. Accord-
ingly, this code is used as sentinel to indicate the end of text. It should be
noted that we don’t get code 0 when writing the character literal ’0’, because
its ASCII code is 48, as we saw in Figure 4.3. The character literal for NUL,
the ASCII name for the symbol with code 0, is ’\0’. When discussing code
we follow the common convention of referring to NUL as “the null character”.

The character array s is a legal string if every character in
s[0..n] is legally addressable, where s[n] is the leftmost
null character. The length of the string is n.

A difficulty with the intrinsic sequence representation chosen for strings is that,
at the time the array is declared, the length of the string is often not known. Code
that fills the array with a string has to watch simultaneously for the end of the
array and for the end of the string. This is often not done correctly, so that string
characters are written beyond the area allocated to the array. This is called “buffer
overflow”. Such code can fail with disastrous consequences after years of satisfactory
performance for millions of users. Sometimes the failure is caused on purpose by a
malicious user; this is called an “attack”, or an “exploit”.

The function strcopy in Program 9.3 demonstrates several features of string
processing. The length of the string is not a parameter, as the code assumes that
the string is correctly terminated by the null character. In this way the end of string
s is detected. The function adds the null character to the copy being created. In
function main we print s as an integer array, so we can see the terminating null

9.3. STRINGS 123

00 #include <stdio.h>
01
02 char* strcopy(char dest[], char src[]) {
03 // Purpose: return dest after copying contents of src to dest,
04 // including the terminating null character.
05 // Preconditions: src is a legal string of length n and
06 // dest[0..n-1] is allocated.
07 int i;
08 for(i=0; src[i] != ’\0’; i++) dest[i] = src[i];
09 dest[i] = ’\0’;
10 return dest;
11 }
12 int main() {
13 char t[] = "abc";
14 const int n = 4; char s[n];
15 // One extra location for terminating null character.
16 strcopy(s, t);
17 for(int i=0; i<n; i++) printf("%d ", s[i]);
18 printf("\n%s\n", s);
19 }

Figure 9.3: A beginner’s string copy function. The return value is conventional for
a string copy function. It is often left unused.

character. It is also printed as a string, and then the null character does not
appear.

As C programmers gain experience, they tend to write the body of strcopy in
Program 9.3 more succinctly. By using pointers, the array index can be avoided.
The body then becomes

for(; *t != ’\0’; s++, t++) *s = *t;
*s = ’\0’;

By combining the assignment with the test, the body of the function becomes

for(; (*s = *t) != ’\0’; s++, t++);

The body of the for statement has disappeared. Now the last assignment is the
one in the test that causes the for statement to terminate. The null character
terminating s is thereby copied from t.

As a further abbreviation we can include the increments into the assignment.
In this way the body becomes

for(; (*s++ = *t++) != ’\0’;);

124 CHAPTER 9. ARRAYS AND STRINGS

By now the for-statement has become quite degenerate: two of its three fields are
empty. It looks better as a while statement:

while((*s++ = *t++) != ’\0’);

The condition false is coded as zero, which happens to be the code for the null
character. This is exploited in the next simplification, which changes the body of
the function to

while(*s++ = *t++);

This allows the function to be defined as:

void strcopy(char s[], char t[]) {while(*s++ = *t++);}

Copying a string is such a commonly required function that it occurs in the
C standard library. It is accessed by including string.h. Though not officially
defined like this, typical use can assume the declaration to be

char *strcpy(char* s, char* t);

The ordering of the parameters and the return type make it look like the assignment
statement: the function copies from t to s and it returns a pointer to the first
element of s. This function is one of many string functions available from the
standard library.

9.3.2 Defense against infinite strings

Short and sweet as we may have been able to make the body of strcopy, the
function relies on two crucial assumptions: that t is terminated by a null character
and that s has enough memory allocated to it. It may have disastrous consequences
to call strcpy when these conditions are not met. While the code cannot be made
totally fool- and villain-proof, at least something can be done to make the function
less fragile.

An array of characters that is not terminated by a null, can be thought of as
an infinite string. Such a string can not be copied into any amount of memory
allocated for the string being copied to. To ensure that copying a string does not
cause any writing to memory that is not allocated for the purpose, an additional
parameter can be added to the function.

This can be done in several ways. The library function strncpy includes an
integer parameter that can be used as defense against attempting to copy an infinite
string. Though not officially defined like this, typical use can assume the declaration
to be

char *strncpy(char *s, char *t, int n);

writes n characters in s. This is independent of the number k of characters in t
preceding the first null character. The function copies the first k characters of t
into s followed by n− k null characters if k is less than n. Otherwise, it copies the

9.4. MULTI-DIMENSIONAL ARRAYS 125

first n characters of t into s, which does not in that case become a null-terminated
string.

The function for comparing two strings likewise comes in two varieties: strcmp
and strncmp. The same is true in the case of string concatenation, for which the
standard library has strcat and strncat.

9.4 Multi-dimensional arrays

The elements of an array can themselves be arrays. We think of such an array as
two-dimensional. See for example Program 9.4: Row-major or column-major? Here
A has two elements, A[0] and A[1], each of which is an array of three elements.
Its first dimension is 2; its second dimension is 3. Accordingly, it is created by the
definition int A[2][3]. The output of Program 9.4 is:

10 11 12
11 12 13

10 11 12 11 12 13

We can define a three-dimensional array; it has two-dimensional arrays as elements.
And so on to any number of dimensions. Although there is no limit to this number,
in practice one finds mostly one- and two-dimensional arrays.

00 #include <stdio.h>
01
02 int main() {
03 int A[2][3] = {{10,11,12},{11,12,13}}, *ap;
04 int n = sizeof(A)/sizeof(A[0][0]);
05 int i, j;
06 for(i=0; i<2; i++) {
07 for(j=0; j<3; j++) printf("%d ", A[i][j]);
08 printf("\n");
09 }
10 printf("\n");
11 for(i=0, ap=&A[0][0]; i<n; i++)
12 printf("%d ", *(ap++));
13 printf("\n");
14 }

Output:

10 11 12
11 12 13

10 11 12 11 12 13

Figure 9.4: Row-major or Column-major?

Arrays, of whatever dimension, are a fiction maintained by the programming lan-
guage. The underlying reality is random-access memory, which is one-dimensional.
As a result, when a two-dimensional array is stored, either rows or columns have

126 CHAPTER 9. ARRAYS AND STRINGS

to be broken up. If rows are left intact, then the array is said to be stored in
“row-major” order; otherwise, in “column-major order”. In C, arrays are stored
in row-major order. This is can also be expressed by saying that the second in-
dex varies most rapidly when scanning along the array elements in memory. For
example, array A is stored as:

A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2]

The second loop in the Program 9.4 demonstrates this.
The initialization of the two-dimensional array in this program also has to be in

row-major order:

int A[2][3] = {{10,11,12},{11,12,13}};

I started out by saying that A is an array of arrays: that A[0] is {10,11,12},
and A[1] is {11,12,13}. This is true only to a certain extent. Consider the code
snippet

int A[2][3] = {{10,11,12},{11,12,13}};
printf("size of A: %d\n", sizeof(A)/sizeof(A[0][0]));
printf("size of A[0]: %d\n", sizeof(A[0])/sizeof(A[0][0]));

which causes as output

size of A: 6
size of A[0]: 3

The first line shows A as a single sequence consisting of the rows concatenated.
According to the second line, A[0] does seem to exist and it even has the length of
the rows of A.

Array A is only one way of storing six numbers arranged like

10 11 12
11 12 13

Let us compare A with an array that really is an array of arrays, as B is in the code
snippet:

int A[2][3] = {{10,11,12},{11,12,13}};
int* B[2];
int B0[] = {10,11,12};
int B1[] = {11,12,13};
B[0] = (int*) B0;
B[1] = (int*) B1;
printf("B[1][2]: %d\n", *(*(B+1)+2));
printf("B[1][2]: %d\n", B[1][2]);
assert(&B[1][2] == *(B+1)+2);

9.4. MULTI-DIMENSIONAL ARRAYS 127

The definition of A allocates space for six integers; that of B only allocates space for
two pointers to integers. These pointers point to first elements of arrays. Obviously
we can access the element in the second row and third column with *(*(B+1)+2).
But we can write equivalently B[1][2]! As A is a two-dimensional array of integers,
the compiler translates A[i][j] to *(A+i*r+j), where r is the length of the rows
of A. As B is a one-dimensional array of pointers to integers, the compiler translates
B[i][j] to *(*(B+i)+j)). This will turn out to be important later when we
program with matrices.

In discussing definitions of one-dimensional arrays, I advocated the use of an
incomplete array type so that the size of the array would only specified in a single
place. Accordingly, I would advocate

int A[][] = {{10,11,12},{11,12,13},{12,13,14}};

as the size information is already available in this way. However, this is an error:
the C language only allows the leftmost dimension to be left unspecified.

This restriction not only affects array definitions, but also array parameters of
functions. To review the options we have in C, let us consider a function that adds
the diagonal elements of square array. In this example, it would return

A[0][0] + A[1][1]+ A[2][2]

The declaration of such a function should be

double diagSum(double A[][], int n);

The requirement that all dimensions but the first be specified prevents this. We
even have to put constants for the second dimension, as in

double diagSum(double A[][3], int n);

and then make sure that this function is only called with 3 as value for n. This goes
against the basic idea of a function: to parametrize the code in body∗.

This is why we should not represent a matrix by a two-dimensional array of
numbers, but by a one-dimensional array of pointers to one-dimensional arrays of
numbers that represent the rows of the matrix†. Thus we can define diagSum as in
Program 9.5.

The function diagSum is as general as we want it: it will work for square matrices
of any size n. We can’t expect the array definition to be general, as every particular
array has a particular size. So the array definitions have constants for their bounds.
Still, it would be preferable to be able to use a variable to specify that the three
occurrences of an array bound have to be the same: C does not allow

∗The constant in the second dimension can be made symbolic by means of a macro (see Ap-
pendix D), as is done in Program 9.5. This does not solve the problem, as the function is still only
usable with one size of array.
†Numerical Recipes in C by Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling.

128 CHAPTER 9. ARRAYS AND STRINGS

00 #include <stdio.h>
01 #define N 3
02
03 double diagSum(double** A, int n) {
04 double sum = 0.0;
05 for(int i=0; i<n; i++) sum += A[i][i];
06 return sum;
07 }
08
09 int main() {
10 double data[N][N] = {
11 {1,2,3},
12 {3,2,1},
13 {2,3,1}};
14 double* A[N];
15 for(int i=0; i<N; i++) A[i] = &data[i][0];
16 printf("trace: %lf\n", diagSum(A,N));
17 }

Figure 9.5: Two-dimensional array A as array of pointers to arrays.

const int N = 3;
double data[N][N] = {
{1,2,3},
{3,2,1},
{2,3,1}};

double* A[N];

9.5 Exercises

9.5.1 Evaluating a polynomial

A expression of the form

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

is called a polynomial in x with coefficients a0, . . . , an−1. Write a function

double evalPol(double a[], int n, double x);

that evaluates the polynomial with coefficients in array a of length n for the value
x.

An efficient algorithm is suggested by Horner’s Scheme:

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 =
a0 + x(a1 + x(a2 + · · ·+ x(an−2 + xan−1) · · ·)

9.5. EXERCISES 129

9.5.2 Gaps

Given integer array a of length n containing nonnegative integers in increasing order.
The gaps of such an array are all nonnegative integers less than a[n-1] that do not
occur in a. Write the definition of printGaps that is missing in the program in
Figure 9.6.

#include <stdio.h>

void printGaps(int a[], int n);
int main() {
int a[] = {1,3,5,9,10,14,19,20};
printGaps(a, sizeof(a)/sizeof(a[0]));

}
/* Output:
0 2 4 6 7 8 11 12 13 15 16 17 18
*/

Figure 9.6: A main program for function printGaps.

9.5.3 Purifying input

When entering a password, some software allows one to correct typing mistakes by
backspacing over them. Others don’t: they apparently record the backspace char-
acters as part of the attempted password. This exercise is to see how difficult it is
to implement correction of a typed string by means of backspaces. Consider Pro-
gram 9.7. Function capture is the primitive version that captures keystrokes from
standard input without doing anything special for backspaces. Function pureCap
lets each backspace cancel the most recent uncanceled character. If a backspace is
entered when are no (more) uncanceled characters, then it is ignored.

Here is a sample run of the program:

abc^H^H^H^Hdef
number of characters captured: 10
97 98 99 8 8 8 8 100 101 102
abc^H^H^H^Hdef
number of characters captured: 3
100 101 102

The lines abc^H^H^H^Hdef have been typed by the user when the program waits
for input. Each ^H represents a backspace character. Note that there are more
backspaces than the preceding normal input. Accordingly, the last backspace is
ignored by pureCap.

130 CHAPTER 9. ARRAYS AND STRINGS

00 #include <stdio.h>
01
02 int capture(char arr[], int n) {
03 /* places characters from standard input into arr */
04 int c, i;
05 for(i=0; i<n; i++) {
06 if ((c = getchar()) == ’\n’) break;
07 arr[i] = c;
08 }
09 return i;
10 }
11 int pureCap(char arr[], int n);
12 int main() {
13 const int n = 200; char arr[n];
14 int i, j;
15 j = capture(arr, n);
16 printf("number of characters captured: %d\n", j);
17 for(i = 0; i < j; i++) printf("%d ", arr[i]);
18 printf("\n");
19 j = pureCap(arr, n);
20 printf("number of characters captured: %d\n", j);
21 for(i = 0; i < j; i++) printf("%d ", arr[i]);
22 printf("\n");
23 }

Figure 9.7: A function for capturing standard input.

9.5.4 Tallying

In the program below, add definitions of functions so that a call to tally prints the
different elements of the given array followed by the number of different elements.

#include <stdio.h>
void tally(int a[], int n);
int main() {
int a[] = {4,2,6,7,4,5,9,7,4,7,1,7,5,4,8,8};
tally(a, sizeof(a)/sizeof(a[0]));

}

We the data shown the output should be:

1 2 4 5 6 7 8 9
8

9.5. EXERCISES 131

9.5.5 Relative frequencies in a character file

Supply the function definition missing from the following program:

int freqDist(double freqs[], int n);
// Purpose: place the the relative frequencies of the printable
// characters of the text file in standard input in the array
// freqs of length n.
// Preconditions: n >= 0 and freqs[0..n-1] allocated.
int main() {
double freqs[128];
int sz = sizeof(freqs)/sizeof(freqs[0]);
int i;
printf("number of characters: %d\n", freqDist(freqs, sz));
printf("character frequencies in percent:\n");
for(i=0; i<sz; i++) {
if (freqs[i] != 0)
printf("%c:%1.2f ", (char)i, 100*freqs[i]);

}
}

For example, for with the input

the quick brown fox jumps over the lazy dog

we get an unusually flat frequency distribution; the output is (some newlines inserted
to improve readability):

number of characters: 44
character frequencies in percent:

:2.27 :18.18
a:2.27 b:2.27 c:2.27 d:2.27 e:6.82 f:2.27 g:2.27 h:4.55 i:2.27 j:2.27
k:2.27 l:2.27 m:2.27 n:2.27 o:9.09 p:2.27 q:2.27 r:4.55 s:2.27 t:4.55
u:4.55 v:2.27 w:2.27 x:2.27 y:2.27 z:2.27

The first frequency, 2.27, is that of the newline character, which is printed as an
empty line. The second frequency is that of the space character, so it is printed as
a . . . space!

When the input is “Moby Dick”, a big novel, the output is (some newlines
inserted to improve readability):

132 CHAPTER 9. ARRAYS AND STRINGS

number of characters: 1220151
character frequencies in percent:

:1.88 :16.24 !:0.14 ":0.25 $:0.00 &:0.00 ’:0.24
(:0.02):0.02 *:0.00 ,:1.58 -:0.49 .:0.62
0:0.01 1:0.01 2:0.00 3:0.00 4:0.00 5:0.00 6:0.00 7:0.00 8:0.00 9:0.00
::0.02 ;:0.34 ?:0.08
A:0.22 B:0.12 C:0.09 D:0.06 E:0.10 F:0.07 G:0.05 H:0.12 I:0.29 J:0.02
K:0.01 L:0.07 M:0.06 N:0.10 O:0.08 P:0.09 Q:0.03 R:0.07 S:0.18 T:0.20
U:0.02 V:0.01 W:0.11 X:0.00 Y:0.03 Z:0.00
[:0.00]:0.00 _:0.00
a:6.17 b:1.27 c:1.75 d:3.07 e:9.50 f:1.64 g:1.65 h:5.04 i:5.07 j:0.07
k:0.65 l:3.43 m:1.85 n:5.28 o:5.60 p:1.33 q:0.10 r:4.21 s:5.08 t:7.01
u:2.17 v:0.69 w:1.71 x:0.08 y:1.36 z:0.05

The frequency of newlines suggests an average line length of about fifty; that of the
spaces an average word length of around six. As in most English texts, the letter e
is the most frequent one, although apparently not among the capital letters.

9.5.6 Cyclic shift

A cyclic shift of a sequence moves every element k places to the left; for the purpose
of this operation, the rightmost element is considered to be to the left of the leftmost
element. Here is an example with k = 3.

0 1 2 3 4 5 6 7 8 9 ⇒ 3 4 5 6 7 8 9 0 1 2

The function to perform cyclic shifting has as declaration:

void shift(int a[], int n, int k);

In general we define cyclic shifting as follows. If on entry the elements of a are
a0, . . . , an−1, then on exit from the function they are ai0 , . . . , ain−1 , where ij =
(j + k) mod n for j = 0, . . . , n− 1.

For example, if on entry to the function a0, . . . , an−1 are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
and k = 3, then on exit they are 3, 4, 5, 6, 7, 8, 9, 0, 1, 2.

One solution is as follows:

void shift(int a[], int n, int k) {
int b[n], i;
for(int j=0; j<n; j++)
b[(i = j-k) < 0 ? i+n : i] = a[j];

for(int j=0; j<n; j++) a[j] = b[j];
}

To make this work, we use n extra storage locations in the form of the array b. It
is possible to do with fewer:

9.5. EXERCISES 133

void shift(int a[], int n, int k) {
while(k-- > 0) {
int temp = a[0];
for(int i=1; i<n; i++) a[i-1] = a[i];
a[n-1] = temp;

}
}

This needs only one extra storage location, but takes kn assignments. For most
values of k, this is a lot more than the previous solution.

The following solution is better than both previous ones: no temporary storage
to speak of, and fewer assignments for most values of k. This solution consists of
applying a number of reversals to the array. Example:

0 1 2︸ ︷︷ ︸
rev

3 4 5 6 7 8 9︸ ︷︷ ︸
rev

⇒ 2 1 0 9 8 7 6 5 4 3︸ ︷︷ ︸
rev

⇒ 3 4 5 6 7 8 9 0 1 2

Believe it or not, this works every time.

void rev(int a[], int i, int j) { /* reverses a[i]..a[j] */
for(; i<j; i++, j--) {
int temp = a[i]; a[i] = a[j]; a[j] = temp;

}
}
void shift(int a[], int n, int k) {
rev(a, 0, k-1); rev(a, k, n-1); rev(a, 0, n-1);

}

The number of swaps in the calls to rev is approximately, for large k and n, k/2 +
(n− k)/2 + n/2 = n. Each of these swaps takes three assignments, so the shifting
takes about 3n assignments, however large or small k is. Doing the reversing trick
is therefore more efficient than the first two solutions.

After these preliminaries, it is time to state the exercise:
Implement void shift(int a[], int n, int k); using as little extra stor-

age as the reversing trick, but using a significantly smaller number of assignments.

9.5.7 Adding line numbers

A surprising number of useful functions can be written as variants of the file copy
program‡:

#include <stdio.h>

void fileCopy() {
int ch;
while ((ch = getchar()) != EOF) putchar(ch);

}

‡“Software Tools” by Brian Kernighan and P. J. Plauger. Addison-Wesley, 1976.

134 CHAPTER 9. ARRAYS AND STRINGS

Use this function as starting point for a program that reads a file as standard input
and copies it to standard output with line numbers added.

9.5.8 String length

Implement the function

int strnlen(char *s, int n);

that returns the number of characters in s, not including the terminating null
character, unless this number exceeds n, in which case the function returns −1.

9.5.9 Number of occurrences

Implement the function

int charCount(char *s, char c, int n);

that return the number of occurrences of c in s, unless the length of the string
exceeds n, in which case the function returns −1.

9.5.10 Character mapping

Implement the function

int toLower(char *s);

that changes to the corresponding lowercase letter each occurrence of an uppercase
letter in the string that starts at s. It returns the number of characters changed.

9.5.11 Palindromes

Implement the function

int palindrome(char *s);

that returns 1 if the string that starts at s is a palindrome, and 0 otherwise. Make
sure it works when the length of the string is 0 or 1.

9.5.12 Preventing buffer overflow

It is often required to store a string in a character array of fixed length n (a “buffer”),
where the string is given as a pointer to its first character. To prevent buffer overflow
it should be checked whether the string fits into the array. Write a function that
serves this purpose.

9.5. EXERCISES 135

9.5.13 Integer to string

Write a function with header int itos(int i, char* str) (itos: “integer to
string”) that places the digits of the decimal representation of i in str and returns
the number of characters so placed. The decimal representation must not have
leading zeros. What does this imply in the case of i equal to 0?

9.5.14 Anagrams

Write a program that finds anagrams of a given word that may occur in a given list
words. For example suppose we want anagrams of “protein” and suppose we have
available a file called wordlist consisting of words in lower-case letters separated
by white space. Suppose the executable of our program is in the file prog. Then
we use it as follows:

%prog protein < wordlist
%pointer
%protein

9.5.15 File of text to array of pointers to lines

The function

int lineList(char *arr[], int n, int lnLen);

assumes that standard input is a character file and that arr has length n. The func-
tion returns m and ensures that concatenating all strings arr[i] for i = 0, . . . ,m−1
results in a string containing the characters of arr broken up into lines separated
by a single ’\n’. Each line contains the words of arr separated by a single space.
Moreover, each line is such that adding the first word of the next line would make
the length of the line longer than lnLen§.

9.5.16 Guessing game

There are several guessing games on the following pattern. Player A invites player
B to select a secret number N . A asks B a few seemingly innocent questions about
N . On the basis of the answers A hopes to impress bystanders by revealing the
value of N .

A computer-based version of such a game goes as follows.

§This is the well-known “Telegram Problem” attributed to P. Naur but also to M.E. Conway.

136 CHAPTER 9. ARRAYS AND STRINGS

Select an integer N in 0..7.
If N is one of the following four, then enter 1, otherwise enter 0.
0 1 2 3

0
If N is one of the following four, then enter 1, otherwise enter 0.
- - - -

1
If N is one of the following four, then enter 1, otherwise enter 0.
- - - -

0
N is 6

B’s answers are indented. The first set of numbers presented by the computer
(playing A) is {0, 1, 2, 3}. The other two sets of four numbers in {0, 1, 2, 3, 4, 5, 6, 7}
are blanked out. Part of the exercise is to find three suitable sets of numbers—you
can, but do not need to, include {0, 1, 2, 3} among the three sets of numbers.

In case you need a hint for finding three suitable sets of numbers, here is one.
A regular octahedron has eight faces and three equators. By “equator” of an octa-
hedron I mean a set of four vertices that lie in a flat plane.

Chapter 10

Structures and unions

So far the array was the only way to aggregate an existing data structure into a
composite one. An array is accessed by means of a numerical index. This has as
advantage that the aggregate can be made arbitrarily large. Such flexibility requires
all elements to be of the same type. This limitation is removed by the structure,
which is an aggregate where the elements are accessed by names chosen by the
programmer and where the elements do not have to be of the same type. These
advantages come of course at a cost: it is not convenient to create structures with
more than a small number of elements.

10.1 An example of using structures

Recall from Exercise 3.8.16 the unwieldy function header

double area(double ux, double uy,
double vx, double vy,
double wx, double wy)

in which the formal parameters describe a triangle by listing its vertices as being the
endpoints of the vectors u, v, and w, where each of these vertices is in turn spelled
out by means of its x and y coordinates. Thus six numbers are given, whereas we
have only a single concept in mind. Structures can help to get code and concepts
closer to each other.

A missing concept is that of the vector, as distinct from two numbers specifying
the coordinates of its endpoint. Consider

struct vec {double x; double y;} u, v, w;

Here the new keyword struct introduces the definition of a structure. The identifier
vec is the tag of the structure. The structure has two components named x and y,
which are double-length floating-point numbers. The structure thus defined is the
type of the variables u, v, and w. Another way of getting the same effect is to write
instead

137

138 CHAPTER 10. STRUCTURES AND UNIONS

struct vec {double x; double y;};
struct vec u, v, w;

The first line reserves no storage; it introduces vec as the tag of a structure, to-
gether with the names and types of its components. The second line introduces the
variables of the specified type and reserves storage for them.

There is variant of the second style of struct definition that relies on typedef.
Here vec is introduced as a typedef rather than as a tag:

typedef struct {double x; double y;} vec;
vec u, v, w;

As a result, the definition of the variables is simplified.
Whichever of the three styles is used, there is no difference as far as the resulting

variables u, v, and w are concerned: the components of u are available as the
variables u.x and u.y, and similarly for v and w.

Structures are similar to arrays in the way they are initialized. We could have
created some of the above structures with an initialization:

typedef struct {double x; double y;} vec;
vec u = {1.0, 2.0}, v = {1.0, 2.0}, w;
w.x = u.x + v.x;
w.y = u.y + v.y;

The uninitialized structure w is made equal to the sum of u and v by means of
assignments.

In this example there is structure also above the level of vectors: the input
to the function area is conceptually a triangle. That suggests defining a struct
accordingly.

In Program 10.1: Area of Triangle we switch from vector terminology to the
ancient one of Euclid: the structs represent points, lines, and triangles. Points are
pairs of numbers, in deference to a 17th-century invention.

Pointers to structures In principle pointers to structures are like other pointers.
However, they come with special notation.

We could have done the above example with pointers:

typedef struct {double x; double y;} vec;
vec u = {1.0, 2.0}, v = {1.0, 2.0}, w;
vec *up = &u, *vp = &v, *wp = &w;
(*wp).x = (*up).x + (*vp).x;
(*wp).y = (*up).y + (*vp).y;

The parentheses are necessary because the dot operator has higher priority than
the dereferencing operator. Because this combination of operators is so common,
they can be replaced by the single operator ->, as in the example below:

10.1. AN EXAMPLE OF USING STRUCTURES 139

00 #include <stdio.h>
01 #include <math.h>
02
03 typedef struct {double x; double y;} point;
04 typedef struct {point A; point B;} line;
05 typedef struct {point A; point B; point C;} triangle;
06
07 double len(line l) {
08 double dx = (l.A).x - (l.B).x;
09 double dy = (l.A).y - (l.B).y;
10 return sqrt(dx*dx + dy*dy);
11 }
12 double heron(triangle T) {
13 point A = T.A, B = T.B, C = T.C;
14 line a = {B,C}, b = {C,A}, c = {A,B};
15 double la = len(a), lb = len(b), lc = len(c) ;
16 double s = (la+lb+lc)/2;
17 return sqrt(s*(s-la)*(s-lb)*(s-lc));
18 }
19 int main() {
20 point A = {2,2}, B = {3,1}, C = {4,3};
21 triangle ABC = {A,B,C}; line c = {A,B};
22 printf("distance between A and B: %lf\n", len(c));
23 printf("area: %lf\n", heron(ABC));
24 }

Figure 10.1: Area of Triangle, code to illustrate use of structures.

distance between A and B: 1.414214
area: 1.500000

Figure 10.2: Output of Program 10.1.

typedef struct {double x; double y;} vec;
vec u = {1.0, 2.0}, v = {1.0, 2.0}, w;
vec *up = &u, *vp = &v, *wp = &w;
wp -> x = up -> x + vp -> x;
wp -> y = up -> y + vp -> y;

140 CHAPTER 10. STRUCTURES AND UNIONS

10.2 Properties of structures

Arrays and structures have in common that they are aggregates of data of which
each element is accessed by means of an index. In the case of arrays the index is an
integer; in case of structures it is an identifier selected by the programmer. Arrays
and structures also have in common that they allow initializers. In spite of these
similarities, there are fundamental differences.

Consider for example a definition of a function that subtracts one vector from
another:

vec sub(vec u, vec v) {
vec temp = {u.x - v.x, u.y - v.y};
return temp;

}

The analogous function for arrays would be

double *sub(double u[], double v[], int n) {
double temp[n];
for(--n; n >= 0; n--) temp[n] = u[n]-v[n];
return temp; /* dangling pointer */

}

In function double* sub a local array temp is created and a pointer to it is returned.
This is wrong in the sense of leading to code of which the effect is undefined at best
and typically disastrous.

Why is that so? Consider a call to this function:

double u[] = {2, 2}, v[] = {3, 1}, *diff = sub(u, v, 2);

All variables local to a function disappear on exit from the function. Therefore,
the array temp no longer exists when evaluation of the expression sub(u, v, 2) is
completed. As a result, diff points to the area of memory that has been occupied
by temp. After exit from sub its contents are no longer defined. This is an example
of a dangling pointer.

The function for vector subtraction with structures is different. Consider

vec u = {2, 2}, v = {3, 1}, w = {4, 3},
diff = sub(u, v);

Here the expression sub(u, v) has as value the structure itself, not a pointer to it.
The left-hand side of the assignment, diff is itself a structure. The initialization of
diff causes an entire structure to be copied, component by component, to another
structure of the same type.

This point is illustrated by the code:

vec u = {2, 2}, v; v = u;

10.3. MODELING OBJECTS WITH STRUCTURES 141

Such an assignment is not possible between arrays.

double u[] = {2, 2}, v[2]; v = u;

is not possible because v is not a variable. In the following:

void foo(double u[], double v[], int n) { v = u; }

double w0[] = {2, 2}, w1[2];
foo(w0, w1, 2);

v is a variable (because it is a pointer to the first element of the array that is the
actual parameter), so the assignment v = u is legal. But because the parameters
are passed according to the call-by-value rule, only the local copy of v is affected
by the assignment. As a result, the call foo(w0, w1) has no effect.

10.3 Modeling objects with structures

Structures help us get concepts closer to code. Suppose we are working with trian-
gles and that the attributes of interest are the three vectors that are the vertices
and that additional attributes of interest are the angles and the area of a triangle.
We can store these seven items in a structure as in

typedef struct {double x; double y;} vec;
typedef struct

{vec u; vec v; vec w;
double angleU; double angleV; double angleW;
double area;
} triangle;

To create a new triangle, we should only need to specify the three vertices, as
the other four attributes can be computed from them. This suggests the function
mkTri (“make triangle”):

triangle mkTri(vec u, vec v, vec w) {
triangle t;
t.u = u; t.v = v; t.w = w;
t.angleU = angle(sub(v,u), sub(w,u));
t.angleV = angle(sub(u,v), sub(w,v));
t.angleW = angle(sub(u,w), sub(v,w));
t.area = area(t);
return t;

}

which needs the functions angle for computing the angle between two vectors, sub
for subtracting one vector from another, and area. See Program 10.3: Triangles
with Vectors, where it all comes together. The example is a triangle laid out on
a building site to ensure a right angle. According to an old carpenter’s trick, you
make the sides of lengths 3, 4, and 5. The output verifies the right angle.

142 CHAPTER 10. STRUCTURES AND UNIONS

00 #include <stdio.h>
01 #include <math.h>
02 const double pi = 3.1415926535;
03 typedef struct {double x; double y;} vec;
04 typedef struct {
05 vec u; vec v; vec w;
06 double angleU; double angleV; double angleW;
07 double area;
08 } triangle;
09 double len(vec v);
10 vec sub(vec u, vec v);
11 double heron(double a, double b, double c);
12 double area(triangle T);
13 double angle(vec u, vec v);
14 triangle mkTri(vec u, vec v, vec w);
15 int main() {
16 vec u = {0,0}, v = {3,0}, w = {0,4};
17 triangle T = mkTri(u,v,w);
18 printf("angles: %lf %lf %lf\narea: %lf\n",
19 T.angleU, T.angleV, T.angleW, T.area);
20 }

Figure 10.3: Triangles with Vectors, code to illustrate creation of triangle structures.
See Program 10.5 for function definitions.

10.4 Unions

C is a typed language. This means that each variable has a type, which determines
how the content of the variable’s memory location (a bit pattern) is translated to
the variable’s value. The type system is a powerful help in avoiding programming
errors. Suppose the language would allow us to treat a float variable with value 0.1
by mistake as an int. Then the integer we would get is not 0 or 1, but 1,036,831,949.
However, sometimes the type system is too rigid. Unions can be used to provide
the desired relief.

10.4.1 Typical use of unions

As an example of use of unions, consider the situation where we have a large col-
lection of positive numbers of which some are in floating-point format, some are
normal-size integers, and some are small integers in the unsigned short format. The
union keyword allows us to define a type, say, fltIntChar that covers all these
types. That is, if we define a variable x of type fltIntChar, then a value of any
of these three types can be stored in x. After having stored a value of one of the

10.4. UNIONS 143

angles: 90.000000 53.130102 36.869898
area: 6.000000

Figure 10.4: Output of Program 10.3.

1 double len(vec v) {
2 return sqrt(v.x*v.x + v.y*v.y);
3 }
4 vec sub(vec u, vec v) {
5 vec temp = {u.x - v.x, u.y - v.y};
6 return temp;
7 }
8 double heron(double a, double b, double c) {
9 double s = (a+b+c)/2;

10 return sqrt(s*(s-a)*(s-b)*(s-c));
11 }
12 double area(triangle T) {
13 return
14 heron(len(sub(T.u, T.v)),
15 len(sub(T.v, T.w)), len(sub(T.w, T.u)));
16 }
17 double angle(vec u, vec v) {
18 return (180.0/pi) * /* degrees per radian */
19 acos((u.x*v.x + u.y*v.y)/(len(u)*len(v)));
20 }
21 triangle mkTri(vec u, vec v, vec w) {
22 triangle t;
23 t.u = u; t.v = v; t.w = w;
24 t.angleU = angle(sub(v,u), sub(w,u));
25 t.angleV = angle(sub(u,v), sub(w,v));
26 t.angleW = angle(sub(u,w), sub(v,w));
27 t.area = area(t);
28 return t;
29 }

Figure 10.5: Function definitions for Program 10.3.

types, we can still store a value in it of any of the other types allowed by the union
declaration.

Suppose now that we want to print the value of x. To do this we need to know
whether to call printf with %f or with %d as formatting code. So far, it was always

144 CHAPTER 10. STRUCTURES AND UNIONS

known of a variable what its type is. With a union type this is no longer the case.
To remedy this situation, union types are defined in a format similar to that of
structures. In this case,

typedef union {float F; int N; unsigned short US;} fltIntShrt;
fltIntShrt x;

This definition allocates a storage area large enough for any of the three types. In a
commonly occurring case this is the four bytes needed for the float and int alter-
natives. Though this is more than the single byte needed for the unsigned short
alternative (again, in this commonly occurring case; it is not mandated by C), all
four bytes are allocated for any variable of type fltIntShrt.

Now we can indicate what type of value to expect in x. For each of the three pos-
sibilities we write printf("%f", x.F), printf("%d", x.N), or printf("%d", x.US).

However, how does the programmer know which of x.F, x.N, x.US to choose?
One cannot tell the type from the content of x, which is just a bit pattern. The
only way this information can be supplied is by whoever stored the value in x. It
is typically so that the only way to do this is to reserve a variable for this purpose.
As the value of such a variable can be restricted to three possibilities, it is natural
to make its type an enumeration, for example:

typedef enum {flt, intgr, ush} type;

Somehow the variable of the union type and the variable indicating its current type
have to be kept together. A natural way to do this is to put them both in a struct:

typedef struct{fltIntShrt num; type t;} miscNum;

The desired large collection of numbers can then be an array of such structs. See
Program 10.6. This program adheres to the usual discipline for unions:

A union type must be disambiguated according to the type of the value
last stored in it.

10.4.2 Abuse of unions

An interesting property of the C programming language is that the rule just in-
troduced is only guideline for the programmer. The language does not enforce it.
We can choose not to follow the guideline occasionally and in the process discover
interesting facts about the way C is implemented.

Consider the declaration

union fltInt {float F; int N; unsigned char s[4];} x;

The declaration allows the variable x of type union fltInt to be converted to
variables of three types: float, int, and unsigned char[].

In this declaration, on a computer where int and float occupy 32 bits and
where char occupies 8 bits, the three derived variables correspond to the same area
of memory.

10.4. UNIONS 145

00 #include <stdio.h>
01
02 typedef enum {flt, // float
03 intgr, // integer
04 ush} // unsigned short
05 type;
06 typedef union {float F; int N; unsigned short US;}
07 fltIntShrt;
08 typedef struct{fltIntShrt num; type t;} miscNum;
09
10 void print(fltIntShrt x, type t) {
11 switch(t) {
12 case flt:
13 printf("%f ", x.F); break;
14 case intgr:
15 printf("%d ", x.N); break;
16 case ush:
17 printf("%hu ", x.US); break;
18 }
19 }
20 int main() {
21 const int n = 100000;
22 miscNum vec[n]; // collection of miscellaneous numbers
23 vec[0].num.F = 0.12345; vec[0].t = flt;
24 vec[1].num.N = 12345; vec[1].t = intgr;
25 vec[2].num.US = 123; vec[2].t = ush;
26 for (int i = 0; i<3; i++)
27 print(vec[i].num, vec[i].t); printf("\n");
28 }

Figure 10.6: Typical use of unions.

Here is a program that uses the union declaration:

#include <stdio.h>

int main() {
union fltInt {float F; int N; unsigned char s[4];} x;
x.F = 0.1;
printf("%f %d %x\n", x.F, x.N, x.N);
for(int i=0; i<4; i++) printf("%u ", x.s[i]);
printf("\n");

}

146 CHAPTER 10. STRUCTURES AND UNIONS

On a system with a big-endian processor it gives the following output:

0.100000 1036831949 3dcccccd
61 204 204 205

In the little-endian case the output is:

0.100000 1036831949 3dcccccd
205 204 204 61

The printing of x.F should present no surprise. The rest of the output allows
us to have a look behind the scenes to see how the computer that produced this
output represents a floating-point number.

The output 3dcccccd of x.N in hexadecimal shows us bit by bit the content of
x:

3 d c c c c c d
0011 1101 1100 1100 1100 1100 1100 1101

The top row shows the hexadecimal digits from the output. The bottom row shows
the corresponding bits.

The output

61 204 204 205

of x aliased as an array should give the same bits in the form of four eight-bit
integers. So 3d in hexadecimal should have the same bits as the integer denoted by
the decimal numeral 61. Hmm, let’s see . . . 3d is 3 ∗ 16 + 13, which is indeed 61.
Next, cc is 12 ∗ 16 + 12, which is 204. And of course cd is one more. So that checks
OK.

We have peeked at the bits of 0.1 inside the computer and we double-checked.
To make sense of these bits, we first convert 0.1 to a binary floating-point numeral,
using pencil and paper.

Observe that any number f can be written in binary as . . . b2b1b0b−1b−2 . . . such
that

f = . . .+ b222 + b121 + b020 + b−12−1 + b−22−2 + . . .

When f = 0.1 it is clear that b0, b1, b2, . . . are all zero. The number of halves (0 or
1) that f has is indicated by b−1; the number of quarters by b−2, and so on.

Thus we have

0.1 = b−12−1 + b−22−2 + b−32−3 + . . . ⇒ b0, b1, b2 all zero
0.2 = b−1 + b−22−1 + b−32−2 + . . . ⇒ b−1 = 0
0.4 = b−2 + b−32−1 + b−42−2 + . . . ⇒ b−2 = 0
0.8 = b−3 + b−42−1 + b−52−2 + . . . ⇒ b−3 = 0
1.6 = b−4 + b−52−1 + b−62−2 + . . . ⇒ b−4 = 1

0.6 = b−52−1 + b−62−2 + . . . ⇒ b−4 has been subtracted

10.4. UNIONS 147

1.2 = b−5 + b−62−1 + b−72−2 + . . . ⇒ b−5 = 1
0.2 = b−62−1 + b−72−2 + . . . ⇒ b−5 has been subtracted

0.4 = b−6 + b−72−1 + b−82−2 + . . . ⇒ b−6 = b−2, b−7 = b−3, and so on

Because the value of 0.4 on the last line repeats an earlier one, we now know all
further lines, hence all the infinitely many binary digits of 0.1:

0.00011 0011 0011 . . .

We rewrite this to ensure that the part before the power of two is between 1 and 2:

1.1 0011 0011 . . .× 2−4.

This is always possible by adjusting the exponent. Any fractional number, however
big or small, can be specified by the exponent and the digits after the fractional
point.

In principle this last form is the one that is stored as a floating-point number in
the computer. To understand the actual bits we need to know that the computer
on which the program was run uses for the C type float the single-length IEEE-
standard floating-point format.

A bit of research into this format reveals that the 32 bits are used as follows:

1: 33222222222211111111110000000000
2: 10987654321098765432109876543210
3:
4: seeeeeeeefffffffffffffffffffffff
5: 001111011100110011001100110011001100...
6: 3 d c c c c c c

The top two rows 1 and 2 should be read downwards to give the serial numbers
of the bit positions: from right to left we read 0

0
, meaning 00 through 3

1
, meaning

31. In row 4, the s in bit position 31 means that this bit determines the sign
(0 for positive, 1 for negative). The e in bit positions 30 . . . 23 are eight bits for
the exponent. The f in bit positions 22 . . . 0 are the 23 bits for the bits after the
fractional point.

In row 5, we see the bits themselves. Because 0.1 is positive, the sign bit in
position 31 is 0. The eight bits for the exponent in positions 30 . . . 23 can range
from binary 00000000 to 11111111 and represent 0 through 255. According to
the floating-point standard 127 is subtracted, so that both positive and negative
exponents can be represented. So −4 shows up as 123; in bits this is 01111011,
which is what we see in row 5 below the e’s. The fractional bits are below the f’s.
In row 6 the hexadecimal equivalents of the groups of four in row 5 are shown.

As a result we get 3dcccccc, which is 0.1 truncated to fit into the 23 bits
available for the fractional part. What we found is 3dcccccd, which is the result
of rounding upwards. As the discarded bits start with 11, we can tell that the
upward-rounded version is a better approximation. Kudo to the stdio library for
getting this right!

148 CHAPTER 10. STRUCTURES AND UNIONS

10.5 Exercises

10.5.1 Returning multiple results

So far, a function that computes multiple results had to return each in a separate
parameter, as, for example, in

void minMax(int a[], int n, int *min, int *max) {
int i;
*min = *max = a[0];
for(i=1; i<n; i++) {
if (a[i] < *min) *min = a[i];
if (a[i] > *max) *max = a[i];

}
}

Structures allow such multiple outputs to be returned as a single value. Supply the
missing definition in:

#include <stdio.h>

typedef struct {int min; int max;} pair;

pair minMax(int a[], int n);
int main() {
int a[] = {3, 4, 2, 2, 9, 4};
pair p = minMax(a, sizeof(a)/sizeof(a[0]));
printf("%d %d\n", p.min, p.max);

}

10.5.2 Packaging an array

When an array is passed as an actual parameter to a function, it is rarely the
case that anything can be done with the array without knowing its length. This
information is then added in another parameter. The calling program has to make
sure it passes the right number as the length. Wouldn’t it be better if arrays would
have their lengths built-in?

C is not designed that way. However, it is designed to be flexible enough to allow
the programmer to do the right thing. Accordingly, in this exercise you supply the
missing definition in the program in Program 10.7: Array with Length.

10.5.3 File of text to array of pointers to words

The function

int wordList(char *arr[], int n);

10.5. EXERCISES 149

1 #include <stdio.h>
2
3 typedef struct {int min; int max;} pair;
4 typedef struct {int* array; int len;} arLen;
5
6 pair minMax(arLen ar);
7 int main() {
8 int a[] = {3, 4, 2, 2, 9, 4};
9 arLen ar = {(int *)a, sizeof(a)/sizeof(a[0])};

10 pair p = minMax(ar);
11 printf("%d %d\n", p.min, p.max);
12 }

Figure 10.7: Array with Length: struct that pairs array with its length.

assumes that standard input is a character file and that arr has length n. The
function ensures that the i-th word of the input file becomes a string and that
arr[i] is a pointer to the first character of that string, for i = 0, . . . ,m − 1,
where m is the number of words if that number is less than n. In that case arr[m]
contains the null pointer. If m ≥ n, then arr[n-1] contains the null pointer and
arr[0..n-2] point to the first n− 1 words of the input.

The function returns m or n-1, whichever is less. You may truncate any word in
the input that has more than a thousand characters to that length.

150 CHAPTER 10. STRUCTURES AND UNIONS

Chapter 11

Memory allocation

To run a program, memory needs to be allocated for the variables and the functions.
Static memory is memory of which it is known at compile time that it will be needed
at run time. This memory is allocated at compile time. There is also memory that
can only be allocated at run time. This consists of areas known as “the stack” (for
automatic allocation) and “the heap” (for dynamic allocation).

See Program 11.1: Allocation Demo, for some example allocations. Let us look
at the output of the program on two different operating systems.

g++ under Mac OS:

&f: 0x10cecddd0
&a: 0x10cece078
&b0: 0x7fff6caccb60
&b1: 0x7fff6caccb58
p0: 0x10d000890
p1: 0x10d100000

g++ under Linux:

&f: 0x4005c4
&a: 0x601040
&b0: 0x7fffcec109d8
&b1: 0x7fffcec109d0
p0: 0x73d010
p1: 0x2b278ffd0010

The addresses are virtual addresses, not the physical addresses in the random-
access memory of the machine. Both machines probably have a 64-bit architecture,
so that virtual addresses can in principle go all the way up to 0xffffffffffffffff
(16 fs), hexadecimal for 264− 1. The fact that the larger addresses have twelve hex
digits suggest that the virtual address space is only 248 bytes.

Memory for functions and for global variables is allocated at compile time, in
static memory. The fact that f and a have similar, and small, addresses suggest
that static memory is at the low end of the virtual address space. The fact that
b0, the first local variable to be allocated, has the largest address suggests that the
stack is at the high end of the virtual address space. The fact that b1 is adjacent,
and has a lower address, shows that the stack grows “downwards”: from the high
end towards the low end. The dynamically allocated addresses, those for p0 and

151

152 CHAPTER 11. MEMORY ALLOCATION

p1, are in between, which suggests that the heap is between static memory and the
stack.

#include <stdio.h>
#include <stdlib.h>
00 #include <stdio.h>
01 #include <stdlib.h>
02 typedef unsigned long nat;
03
04 nat a;
05 void f() {}
06
07 int main() {
08 nat b0, b1;
09 // Dynamic storage allocation:
10 nat *p0 = (nat*)malloc(1*(sizeof(nat)));
11 nat *p1 = (nat*)malloc(124567890*(sizeof(nat)));
12 printf("\n");
13 printf("&f: %16p\n&a: %16p\n"
14 , (void*)&f, (void*)&a);
15 printf("&b0:%16p\n&b1:%16p\np0: %16p\np1: %16p\n"
16 , (void*)&b0, (void*)&b1, (void*)p0, (void*)p1);
17 }

Figure 11.1: Allocation Demo, a program showing the effects of typical allocations.

When a function has an array as parameter, it needs in addition a parameter
for the size of the array. Each array element is implemented as a pointer. It is
the caller’s responsibility to ensure that the entire contiguous sequence of pointers
implied by the actual parameters can be dereferenced. In preconditions of functions
I summarize this requirement by saying that the implied memory area is allocated.

For example the call to sort in

1 #include <stdio.h>
2
3 void sort(int c[], int n);
4 int main() {
5 int a[] = {0,1,2,3,4};
6 int b[] = {5,6,7,8,9};
7 sort(b, 10);
8 }

is syntactically correct, but its behaviour is undefined. Yet we should not be sur-
prised when it sorts the concatentation of b[0]..b[4] and a[0]..a[4]. It is not
guaranteed by C that a[] and b[] are allocated in adjacent areas. The precondition

11.1. AUTOMATIC MEMORY ALLOCATION 153

to sort should specify that c[0..n-1] be allocated as a single entity. This is meant
by being “allocated”.

11.1 Automatic memory allocation

Strictly, variables local to a function should be declared not only with a type but
also with either the keyword auto or static. In practice, as in this book, it is
unusual for either to appear. This is because a local variable is, almost always, to
be allocated “automatically” and the compiler takes the absence of static to imply
automatic allocation.

Memory for a local variable is allocated at runtime on the stack on entry to a
function and is de-allocated on exit from the function. Between these two events
another function may be called and this typically causes additional automatic allo-
cations. At any point in run time, any number of functions may be entered and not
exited from. All of these may have caused memory to be allocated that is somehow
released by the time the program normally terminates.

This potentially complex situation is simplified by the fact that whenever a
execution of a function terminates, it is the function that was most recently entered.
Thus functions obey the rule: last activated, first de-activated. This translates to
the rule for automatic memory allocation: last allocated, first de-allocated. As this
is reminiscent of the way plates in a cafeteria are stored, the area for automatic
memory allocation is called “the stack”. In conformance with the plate analogy we
call the end at which allocations and de-allocations happen the “top”, and the other
end the “bottom”, of the stack. Because the bottom of the stack stays in the same
place in memory, it is convenient to place it at one of the ends of virtual memory
space.

11.2 Static memory allocation

A consequence of automatic memory allocation of local variables is that their values
are not retained from one call to a function to the next call to the same function. As
this is not always convenient, C provides the possibility of declaring a local variable
“static”. Its storage is allocated at compile time in the static memory area.

However, this is an exceptional use of static memory: as we noted, most pro-
grams have no static locals. All programs define at least one function (main). As all
functions are known at compile time, their code can be allocated in static memory.
The same is true for global variables (those not declared in a function). Because
they can be allocated in static memory, they are, because it is simple and efficient.

Because nothing is added to or deleted from statically allocated storage during
run time, it is convenient to place it at the end of virtual memory space opposite
to that of the stack.

154 CHAPTER 11. MEMORY ALLOCATION

11.3 Dynamic memory allocation

An advantage of automatic memory allocation is the automatic de-allocation: it
happens automatically on exit of the function on whose entry the memory was
allocated. For situations in which automatic storage allocation does not satisfy a
programmer’s needs there is dynamic storage allocation. Allocation of this type of
storage is not triggered by the definition of a variable, but is allocated in the heap
by a call to the function malloc, or one of its variants∗. Such a call can occur
wherever the programmer is allowed to write a function call. This gives a great deal
of flexibility. It has the disadvantage that dynamically allocated memory needs
to be de-allocated explicitly. This is easy to forget, so that it may happen that
execution needs to be abnormally terminated because a request for storage cannot
be granted for lack of room in the heap.

For an example call to malloc, see Program 11.2. The storage obtained can be
accessed by means of the pointer returned by malloc, which contains the address
of the first byte of the storage area allocated. If the attempt at allocation is not
successful (the requested amount of memory may not be available), then the null
pointer is returned. When the library function free is called with as actual param-
eter a pointer obtained by a call to calloc or malloc, then the storage allocated
by that call is de-allocated.

The functions malloc, calloc, and free are made accessible by the standard
library stdlib.

Let us consider an example of dynamic storage allocation. The example is
motivated by a consequence of the array mechanism of C: a function cannot tell
from its array parameter what size it is. It has to be supplied with this size in a
separate parameter. The major problem with this is that the caller may not have
supplied the right value. A minor problem is the clutter caused by the additional
parameter. With the data structure for two-dimensional arrays we found necessary
in Section 9.4 there is an additional problem. This data structure consists of a
one-dimensional array of pointers to one-dimensional arrays containing the rows of
a matrix. It is convenient to allocate this storage dynamically. However, to free it
we need to know the numbers of rows and of columns. These considerations suggest
we regard vectors and matrices as objects containing as components a pointer to
storage for their elements as well as integers for the dimensions.

Let us call the vector type vec and make it a struct with two components: a
pointer to an array containing the vector elements and, as second component, the
length of this array:

typedef struct{double* V; int n;} vec;

The matrix type represents square matrices: those with an equal number of rows
∗calloc is specifically for arrays. It takes two parameters, the number of elements and the size

of each element, as measured by the sizeof operator. calloc sets every bit of the allocated area
to zero. A general-purpose version of calloc is malloc, which takes as it its sole parameter the
number of bytes to be allocated. malloc cannot be counted on to initialize the area allocated by
it, so the caller cannot assume any particular contents. To be able to use these functions, include
the stdlib part of the standard library.

11.3. DYNAMIC MEMORY ALLOCATION 155

and columns. The struct that implements a matrix object assumes that the matrix
is stored as an array of pointers to arrays of double. Accordingly, in addition to
an integer for the number of rows and columns, the struct has as component a
pointer to pointer to double:

typedef struct{double** M; int n;} mat;

Here follow descriptions of the functions supporting vector and matrix objects.

Vector functions The use of vector objects is supported by the following func-
tions.

• The function to create a vector needs the length of the vector to be created.
The function allocates the required amount of dynamic storage and places a
pointer to it in the appropriate component of the newly created vector. As
the vector object itself is created in dynamic storage, the function returns a
pointer to this object. Hence the declaration of this function:

vec* mkVec(int n);

The counterpart of this function is

void freeVec(vec* v);

The argument v needs to be a pointer returned by a call to mkVec. The effect
of freeVec is to deallocate the heap area allocated by that call to mkVec.

• Upon creation of a vector we cannot count on it to contain any useful values.
Function fillVec serves to place the values we need:

void fillVec(vec* v);

• Sundry utility functions such as copyVec and printVec.

See Program 11.2: Vector Functions.

Matrix functions To support the use of matrix objects we have the following
functions.

• In analogy to the vector case we have:

mat* mkMat(int n);
void fillMat(mat* A);

• In analogy to vectors we have

void freeMat(mat* A);

156 CHAPTER 11. MEMORY ALLOCATION

1 // file vectors.h
2 #include<stdio.h>
3 #include<stdlib.h>
4
5 typedef struct{double* V; int n;} vec;
6
7 vec* mkVec(int n);
8 void fillVec(vec* v);
9 void copyVec(vec* v, vec* w);
10 void printVec(vec* v);
11 void freeVec(vec* v);

1 // file vectors.c
2 #include"vectors.h"
3
4 vec* mkVec(int n) {
5 vec* v = (vec*) malloc(sizeof(vec));
6 v -> V = (double*)malloc(n*sizeof(double));
7 v -> n = n;
8 return v;
9 }
10 void fillVec(vec* v) {
11 for(int i=0; i < (v -> n); i++)
12 scanf("%lf", &(v -> V[i]));
13 }
14 void copyVec(vec* v, vec* w) {
15 for(int i=0; i < (v -> n); i++)
16 (v -> V)[i] = (w -> V)[i];
17 }
18 void printVec(vec* v) {
19 for(int i=0; i < (v -> n); i++)
20 printf("%2.2lf ", v -> V[i]);
21 printf("\n\n");
22 }
23 void freeVec(vec* v) { free(v -> V); free(v); }

Figure 11.2: Vector Functions, functions of the vector module. For the meaning
of line 2 in the lower listing, see Chapter 12.

The function for freeing the storage allocated to a vector, freeVec, is simple:
mkVec only executes a single call to malloc. Therefore this storage can be
de-allocated by a single call to free. In the case of a matrix, de-allocation is
more interesting: mkMat(n) executes n+1 calls to malloc; n for the rows and

11.3. DYNAMIC MEMORY ALLOCATION 157

an additional one for the array of pointers to rows. For each of these there
has to be a corresponding call to free.

• There is a function to compute the product of a matrix and a vector

void matVec(mat* A, vec* x);

It computes y = Ax according to the formula

yi =
n−1∑
j=0

Aijxj

for i = 0, . . . , n− 1.

The resulting vector replaces the actual parameter for x. Note the abence of
a formal parameter for the dimension of A and x.

• Function matMult multiplies two matrices. Note the absence of parameters
for the dimensions of the matrices to be multiplied. This is possible because
we have made the matrices into structs that carry this information with
them. It is not always necessary to create a third matrix to hold the product.
Accordingly, matMult does not create it nor does it return such a third matrix.
Instead the actual parameter A is overwritten with this product. If it is desired
to save the contents of A, then the caller can save A in a copy beforehand.

The matrix product C = AB is formed according to the formula

Cik =
n−1∑
j=0

AijBjk

for all i = 0, . . . , n − 1 and k = 0, . . . , n − 1. From this formula it is clear
that at least temporarily a third matrix for the product needs to exist. For
this purpose matMult defines a matrix C in automatic storage. This has the
advantage that allocation of such storage is faster and that de-allocation is
automatic (by exiting from the function) as well as faster. Before function
exit the product matrix is copied into the actual parameter for A.

158 CHAPTER 11. MEMORY ALLOCATION

1 // file matrix.h
2 #include"vectors.h"
3
4 typedef struct{double** M; int n;} mat;
5 mat* mkMat(int p);
6 void freeMat(mat* A);
7 void printMat(mat* A);
8 void fillMat(mat* A);
9 void matVec(mat* A, vec* x);
10 void matMult(mat* A, mat* B);

1 // file matrix1.c
2 #include"matrix.h"
3
4 mat* mkMat(int p) {
5 mat* result = (mat*)malloc(sizeof(mat));
6 result -> n = p;
7 result -> M = (double**)malloc(p*sizeof(double*));
8 for (int i=0; i<p; i++) {
9 result -> M[i] = (double *)malloc(p*sizeof(double));

10 }
11 return result;
12 }
13 void freeMat(mat* A) {
14 for(int i; i<A -> n; i++) free(A -> M[i]);
15 free(A -> M); free(A);
16 }
17 void printMat(mat* A) {
18 for(int i=0; i < A -> n; i++) {
19 for(int j=0; j < A -> n; j++)
20 printf("%2.2lf ", A -> M[i][j]);
21 printf("\n");
22 }
23 printf("\n");
24 }
25 void fillMat(mat* A) {
26 double x;
27 for(int i=0; i < A -> n; i++) {
28 for(int j=0; j < A -> n; j++) {
29 scanf("%lf", &x); A->M [i][j] = x;
30 } } }

Figure 11.3: Matrix Functions, Part I, some of the functions of the matrix module.
For the meaning of the lines 2 in the listings, see Chapter 12.

11.3. DYNAMIC MEMORY ALLOCATION 159

1 // file matrix2.c
2 #include"matrix.h"
3
4 void matVec(mat* A, vec* x){
5 // Purpose: write in x the product Ax.
6 // Preconditions: A and x are created by mkMult
7 // and mkVec and are of equal dimension.
8 int n = x -> n; double y[n];
9 for(int i=0; i < n; i++) {

10 double sum = 0.0;
11 for(int j=0; j < A -> n; j++)
12 sum += (A -> M[i][j])*(x -> V[j]);
13 y[i] = sum;
14 }
15 for(int i=0; i < n; i++) x -> V[i] = y[i];
16 }
17 void matMult(mat* A, mat* B) {
18 // Purpose: write in A the matrix product AB.
19 // Preconditions: A and B are created by mkMult
20 // and are of equal dimension.
21 int n = A -> n; double C[n][n];
22 for (int i=0; i < n; i++) {
23 for (int k=0; k < n; k++) {
24 double sum = 0.0;
25 for (int j=0; j < n; j++)
26 sum += (A->M [i][j])*(B->M [j][k]);
27 C[i][k] = sum;
28 }
29 }
30 for (int i=0; i < n; i++)
31 for (int j=0; j < n; j++)
32 A->M [i][j] = C[i][j];
33 }

Figure 11.4: Matrix Functions, Part 2, the remaining functions of the matrix mod-
ule. See Chapter 12 for the meaning of line 2.

160 CHAPTER 11. MEMORY ALLOCATION

Chapter 12

Multi-file programs

12.1 Why programs get big

Programs get big because we want them to do many things and because we want
them to be easy to use. For the study of large-scale program structure it is most
interesting to look at programs that started out small and ended up, if not big, at
least much less small. Examples of programs with such a history are many of the
Unix tools. They started as a preliminary version thrown together in an afternoon.
As they became more widely used, they acquired features and became easier to use.
By the time they stabilized into the versions we know and love, they had turned into
sizeable programs by significant effort on the part of several programmers. As this
kind of growth is such a useful and natural phenomenon, let us look more closely
at the process of program growth by small increments.

12.2 How programs get big

In C all executable code is in a function. A small increment typically takes the
form of a function getting bigger. But functions are best when short, so excessive
function growth is checked by the spawning of new functions. After a stage of
this kind of growth, the program, though not containing any functions of excessive
length, has too many pages of listing for a programmer to understand or takes too
long to compile. This means that the program needs to be split into several parts.
As a requirement for these parts is that they be compiled separately, they are called
translation units. In most operating environments these reside in files.

Large program size causes several problems. Such programs tend to be complex,
hence difficult to understand. To complete such programs in a reasonable amount
of time requires a group rather than an individual programmer. Decomposing the
program into modules helps to maintain an overview of the entire program and
prevents the programmers working at cross purposes.

A module is motivated by a concept used by the designer of the overall system.
The vectors and matrices in Chapter 11 are simple examples of such concepts. A

161

162 CHAPTER 12. MULTI-FILE PROGRAMS

concept must be representable as a data structure and must be characterized by op-
erations operations on instances of the concept. These operations are implemented
by functions. The names of these functions and the information needed for call-
ing them constitute the module’s interface. The code defining the functions is the
module’s implementation.

12.3 Separate compilation

The essence of the module concept is the separation between a module’s interface
and the module’s implementation. The separation is realized in C by writing the
interface in a header file, which is C code consisting of type definitions and decla-
rations of the module’s functions. The header file does not contain any definitions
of the functions. We adhere to the convention of giving header files names ending
in “.h”.

By the nature of modularization, the program contains more than a single mod-
ule. Often a module A depends on another module B. Thus the user of B needs not
just the interface for B. In such a situation the .h-file for B begins by including the
.h-file for A.

Modularization not only makes the design of the program conceptually clearer,
but also facilitates the generation of the executable code. This is done by organizing
the code so that each module corresponds to a translation unit that can be compiled
separately. In our example the translation unit for the vector module consists of
the file vector.h for the interface and the file vector.c for the module’s imple-
mentation. These are listed in Program 11.2. Similarly the matrix module is in a
translation consisting of the files matrix.h, for the interface (see Program 11.3),
and the files matrix1.c and matrix2.c for the implementation (see Program 11.3
and Program 11.4).

Program 12.1 is an example of user code that relies on the vector and matrix
modules. Hence the inclusion in line 2 of the matrix interface, which, in turn,
includes the vector interface.

Running the program is prepared by three separate compilations: of the vector
module, of the matrix module, and of the file in Program 12.1. After these compila-
tions their resulting object files are linked. Finally the result of linking is executed.
One of the tasks of integrated development environments is to automate these steps
so that the user only sees the output appear.

Sample interaction with Program 12.1 (input indented):

0 1 2
0.00 1.00 2.00

0 1 2
1 2 0
2 0 1

6.00 9.00 12.00

12.3. SEPARATE COMPILATION 163

1 // file main.c
2 #include"matrix.h"
3
4 int main() {
5 int n = 3;
6 vec *v = mkVec(n), *w = mkVec(n);
7 fillVec(v); copyVec(w, v); printVec(w);
8 mat* A = mkMat(n);
9 fillMat(A);

10 matVec(A, v); matVec(A, v); printVec(v);
11 matMult(A, A); matVec(A, w); printVec(w);
12 // pro forma:
13 freeVec(v); freeVec(w); freeMat(A);
14 }

Figure 12.1: Main program for matrix-vector multiplication. Line 13 is marked pro
forma because the freeing of heap space does not make a difference in this situation,
when the entire program is about to be terminated and all its storage returned to
the operating system.

6.00 9.00 12.00

164 CHAPTER 12. MULTI-FILE PROGRAMS

Part III

Algorithms

165

Chapter 13

Search

The purpose of search, in the sense of computing, is to find an item in a collection.
Typically the collection is large. Algorithms for search vary widely: they depend
on the nature of the item, on the structure of the collection, and on how the item
is specified. In this chapter the collection is a sequence and the item is completely
specified.

We first consider search in sequences that are stored and that are randomly
accessible. We also consider search in sequences of which the elements are not
stored, but are computed on demand.

In the programs of this chapter, the items are numbers. The programs can be
readily modified to work for other types that are totally ordered. “Total order”
means that, for any two unequal items, one is either earlier or later than the other
in the ordering.

13.1 Search in a randomly accessible sequence

If we do not know whether the sequence to be searched is sorted, then every item
has to be examined before we can conclude that it does not occur in the collection.
In case it does, on average a sizeable proportion of items has to be examined before
one is found. See Program 13.1: Find.

This algorithm uses the randomly accessible sequence only sequentially. As a
consequence, it can, with suitable modifications, be used to search for an item in a
file.

Binary search In Chapter 1 we considered, and left only partially solved, the
problem of searching for a card with a specified name in an ordered stack of cards.
We could not finish the solution because we lacked a formalism that is sufficiently
precise. Now that we have such a formalism, in the form of C, we can complete the
solution, provided we are willing to represent the ordered stack of cards with names
by a sorted array of numbers.

167

168 CHAPTER 13. SEARCH

00 int find(int a[], int n, int x) {
01 // Purpose: return -1 if x does not occur in a,
02 // otherwise return an i such that a[i] == x.
03 // Preconditions: n >= 0 and a[0..n-1] allocated.
04 int i = 0;
05 // x does not occur in a[0..i-1]
06 for(; i < n; i++) // x does not occur in a[0..i-1]
07 if (a[i] == x) return i;
08 // x does not occur in a[0..i-1] and i == n
09 return -1;
10 }

Figure 13.1: Find, a function that searches an array of which we do not assume
that it is sorted.

We make the task precise by defining the insertion point of x with respect to a
sorted sequence a0, . . . , an−1. The insertion point is the greatest i such that ai ≤ x.
To ensure that the insertion point exists even when a0 > x, we imagine a fictitious
a−1 =∞. In this case the insertion point is −1.

It is common to need to search in arrays of millions of items. When such a
search needs be performed many times, it takes too long to have to examine every
item. But if the array is sorted, then for an array of size one million one only needs
to examine about twenty elements. At every stage of the search there is a remaining
segment of the array that remains to be searched, and this segment can be reduced
to half its size by the comparison of x with the middle of the segment.

See Program 13.2: Find Ordered.

13.2 Search in computed sequence

Integer square root Suppose one wants to compute the “integer square root” of
a nonnegative n, which can be expressed as b

√
nc. Here I use the “floor” function:

bxc is the greatest integer not greater than x∗.
One can consider the non-negative integers to be an ordered sequence. But this

sequence does not need to be stored in an array: it can be computed on demand.
See Program 13.3: Integer Square Root for a function that applies the idea of binary
search to the ordered sequence of non-negative numbers.

Solving equations by binary search The sequence in which an algorithm
searches can also be the floating-point numbers. Consider for example the sequence
f(x), where x is a real number. If reals a and b are such that f(a) and f(b)
have different signs and if f is continuous, then there is an x such that f(x) = 0.

∗The “ceiling” of x is the least integer not less than x, written as dxe.

13.2. SEARCH IN COMPUTED SEQUENCE 169

00 int findOrd(int a[], int n, int x) {
01 // Purpose: return the insertion point IP for x w.r.t. a[0..n]
02 // Preconditions: n >= 0 and a[0..n-1] allocated.
03 if (x < a[0]) return -1; // 0 <= IP <= n-1
04 if (x >= a[n-1]) return n-1; // 0 <= IP < n-1
05 int lb = 0, ub = n-1, m; // lb <= IP < ub
06 while (1) {
07 // lb <= IP < ub
08 if (lb+1 == ub) return lb;
09 // lb+1 < ub
10 m = lb + (ub-lb)/2;
11 // lb < m < ub and lb <= IP < ub
12 if (x < a[m]) ub = m; else lb = m;
13 // lb <= IP < ub
14 }
15 }

Figure 13.2: Find Ordered, a function that searches a sorted array.

This situation is another one where binary search is useful. When we bisect an
interval [a, b] with middle m into [a,m] and [m, b], then we can continue search with
guaranteed success in one of these sub-intervals. Which one to search depends on
the sign of f(m).

In other words we can use binary search to solve non-linear equations in one
variable. As an example we compute the square root of 2 by solving x2 − 0.5 = 0.
See Program 13.4: Solve by Bisection.

170 CHAPTER 13. SEARCH

00 int sqRoot(int n) {
01 // Purpose: return greatest integer
02 // of which the square is not greater than n.
03 // Preconditions: n >= 0
04 if (n == 0 || n == 1) return n;
05 // n > 1
06 int lb = 1, ub;
07 for(ub = 1; ub*ub <= n; ub +=ub)
08 ; // empty body
09 // lb < ub && lb*lb <= n && n < ub*ub
10 while (lb+1 < ub) {
11 int m = lb+(ub-lb)/2;
12 // lb < m < ub
13 if (m*m <= n) lb = m; else ub = m;
14 // lb < ub && lb*lb <= n && n < ub*ub
15 }
16 // lb+1 == ub && lb*lb <= n && n < ub*ub
17 return lb;
18 }

Figure 13.3: Integer Square Root, a function that, given n, computes the greatest
i such that i2 ≤ n.

13.2. SEARCH IN COMPUTED SEQUENCE 171

1 #include <stdio.h>
2 #include <math.h>
3
4 double f(double x, double c) { return x*x - c; }
5 double bisect(double a, double b, double fa, double fb,
6 double (*f)(double, double),
7 double c, float delta) {
8 // Purpose: return x such that f(x’,c) = 0 for an x’
9 // such that |x-x’| <= delta.

10 // Precondition: f(a,c) and f(b,c) differ in sign
11 // and f continuous in x.
12 // x in [a,b]
13 double m, fm;
14 while (b-a > delta) {
15 m = a+(b-a)/2.0; fm = f(m, c);
16 if (fa*fm < 0) { b = m; fb = fm; }
17 else { a = m; fa = fm; }
18 }
19 return m;
20 }
21 int main() {
22 double a = 0, b = 1;
23 printf("%lf",
24 bisect(a, b, f(a, 0.5), f(b, 0.5), &f, 0.5, 1e-6));
25 printf(" sqrt(0.5): %lf\n", sqrt(0.5));
26 }

Figure 13.4: Solve by Bisection, a program to solve an equation by bisection search.
The output is 0.707107 sqrt(0.5): 0.707107

172 CHAPTER 13. SEARCH

The function bisect ignores the fact that floating-point numbers in a computer
are not reals and ignores the fact that, translated to floating-point numbers, f is
not continuous. The example is instructive because it shows that, in spite of this
questionable translation, useful results are obtained. In fact, numerical analysis, a
major application of computers, relies on similarly questionable translations.

13.3 Making a search space linear

When the search space is not a sequence, then searching it becomes more difficult.
Even when one has to resort to brute-force search, that is, examining every item in
the search space, it is sometimes possible to reduce the search effort by making the
search space into a sequence.

Pythagorean triples Opportunities for making a search into a sequence some-
times crop up in unexpected corners. Let us reconsider the problem of generating
Pythagorean triples, as solved by Program 8.8: Pythagoras. Let us consider it in
conjunction with the problem of rendering curves in raster graphics. The curve is a
continuous line while in raster graphics one is constrained to render with the cells
of a rectangular grid. This juxtaposition suggests viewing Pythagorean triples as
the points where a circle intersects points of a rectangular grid. This makes the
search space into a sequence and results in an algorithm similar to Bresenham’s
Circle Algorithm† for rendering circles in raster graphics.

Remember that Pythagorean triples are triples of positive integers x, y, and r
such that x2 + y2 = r2. Examples are 〈3, 4, 5〉, 〈6, 8, 10〉, 〈5, 12, 13〉, 〈9, 12, 15〉, and
〈8, 15, 17〉.

What may come to mind first is to fix r and regard all points with integer
coordinates (“grid points”) in the XY -plane as the search space, and test every one
of these for x2 + y2 = r2. The amount of work required is proportional to r2. That
is, when we increase r by a factor of 10, we need to do 100 times as much work.
This is the brute-force approach taken in Program 8.8: Pythagoras.

Can we do better? The graph of x2 + y2 = r2 is a circle in the XY -plane with
centre at the origin and with radius r. The points in the XY -plane with integer
coordinates form a grid. For every intersection of the circle with a grid point 〈x, y〉,
there is a Pythagorean triple 〈x, y, r〉. For some values of r there are intersections,
for others there are none.

Because of the symmetry of the circle, every intersection with a grid point exists
in eight variants, of which only one is interesting. Whenever 〈x′, y′〉 satisfies x2 +
y2 = r2, this is also the case for 〈y′, x′〉, 〈−x′, y′〉, 〈y′,−x′〉, 〈x′,−y′〉, 〈−y′, x′〉,
〈−x′,−y′〉, and 〈−y′,−x′〉. Geometrically this means that we can restrict the search
to a single octant of the circle, namely the 〈x, y〉 such that 0 < x < y < r.

Brute-force search, as in Program 8.8: Pythagoras, corresponds geometrically
to sweeping the entire two-dimensional area 0 < x < y < r. The number of grid

†US patent 4,371,933. See Computer Graphics, 2nd ed., by Foley, van Dam, Feiner, and Hughes.
Addison-Wesley, 1990; pp. 81–87.

13.3. MAKING A SEARCH SPACE LINEAR 173

points in this area is proportional to r2. This suggests an algorithm that traces a
path in the form of a sequence of grid points in the XY -plane that closely tracks
the arc of the circle. The number of grid points on such a path is proportional to r.

The algorithm in Program 13.5, Curve-Tracking Pythagoras, constructs a path
that I describe in terms of compass points. North (South) is increasing (decreasing)
X coordinate; East (West) is increasing (decreasing) Y coordinate. The path starts
at the Northwest end of the octant just outside the circle. From there it moves
South until it is no longer outside the circle. This means that it may be on the
circle, in which case it has found a Pythagorean triple. In that case it prints it and
takes one more step South, ensuring that it ends up inside the circle. From there is
moves East until it is no longer inside, which is the situation we started from. The
net result is a macro-step consisting of a positive number of steps South followed
by a positive number of steps East.

1 #include <stdio.h>
2
3 void triples(int N) {
4 // Purpose: print all Pythagorean triples <x,y,r> with r < N.
5 // Precondition: N is positive.
6 for(int r = 1; r < N; r++) {
7 int x = 1, y = r;
8 while (y > x) {
9 // x*x + y*y >= r*r

10 while (x*x + y*y > r*r) y--;
11 if (x*x + y*y == r*r) {
12 printf("%d^2 + %d^2 = %d^2\n",
13 x, y, r);
14 y--;
15 }
16 // x*x + y*y < r*r
17 while (x*x + y*y < r*r) x++;
18 // x*x + y*y >= r*r
19 }
20 }
21 }
22 int main() {
23 printf("Input a positive integer.\n");
24 int N; scanf("%d", &N);
25 triples(N);
26 }

Output and input (indented):

Input a positive integer.
50

3^2 + 4^2 = 5^2
6^2 + 8^2 = 10^2
5^2 + 12^2 = 13^2
9^2 + 12^2 = 15^2
8^2 + 15^2 = 17^2
12^2 + 16^2 = 20^2
7^2 + 24^2 = 25^2
15^2 + 20^2 = 25^2
10^2 + 24^2 = 26^2
20^2 + 21^2 = 29^2
18^2 + 24^2 = 30^2
16^2 + 30^2 = 34^2
21^2 + 28^2 = 35^2
12^2 + 35^2 = 37^2
15^2 + 36^2 = 39^2
24^2 + 32^2 = 40^2
9^2 + 40^2 = 41^2
27^2 + 36^2 = 45^2

Figure 13.5: Curve-Tracking Pythogoras, a program that performs linear search for
Pythagorean triples by tracking a circle.

174 CHAPTER 13. SEARCH

13.4 Exercises

13.4.1 Returning an interval

In Program 13.4 a solution is returned in the form of the midpoint of the first
interval that gives a sufficiently accurate approximation. This exercise is to modify
the program so that it returns the approximation in the form of the interval itself.

13.4.2 Variant of bisection search (1)

int find(int a[], int n, int x);
// Purpose: return i such that a[i] == x if such an i exist
// and return -1 otherwise.
// Preconditions: n > 0 and a[0..n-1] is sorted.

13.4.3 Variant of bisection search (2)

typedef struct{int lb; int ub;} intv;
intv find(int a[], int n, int x);
// Purpose: return {lb, ub} such that a[i] == x
// for all i in {lb, ub-1} if such an i exists.
// Otherwise return {lb, lb} where lb is the insertion point.
// Preconditions: n > 0 and a[0..n-1] is sorted.

13.4.4 Variant of bisection search (3)

int find(int a[], int n, int x);
// Purpose: return the i closest to 0 such that
// a[j] <= x for all j in [0,i] and
// a[j] >= x for all j in [i,n-1].
// Preconditions: n > 0 and a[0..n-1] is sorted.

13.4.5 Integer cube root

int intCubeRt(int n);
// Purpose: returns greatest positive x such that x^3 <= n.
// Preconditions: n >= 0.

Chapter 14

Conversion between numeral
bases

In the early days of digital computers it was often asked whether a particular ma-
chine was decimal or binary. The first kind had hardware that represented numbers
as decimal numerals. It was soon found that it is so easy for software to convert
between numerals of different bases that decimal machines disappeared. In this
chapter we look at such conversions.

From a mathematical point of view base conversion is similar to the problem
to be solved in designing a vending machine. Among the functions such a machine
provides is to return change in the form of coins. This requires the conversion of
the amount due (specified in cents) to the number of quarters, dimes, and nickels
equivalent to this amount. Another problem related to base conversion is that of
converting a time period specified in seconds to conventional time units, such as
minutes, hours, and weeks.

14.1 Converting numerals to an arbitrary base

A common task for software is to convert a decimal numeral, say,

123456789

into octal

726746425

or into binary

111010110111100110100010101.

“Number” is an abstract concept — “numeral” is concrete: it is a representation
of a number as a sequence of digits. The digits can be binary, decimal, or from some

175

176 CHAPTER 14. CONVERSION BETWEEN NUMERAL BASES

other base. Thus we can have binary, octal, decimal, and hexadecimal numerals,
just to mention the numeral bases used around computers.

To print a number stored in a computer implies converting this number to a
numeral, hence implies a choice of base for this numeral.

For example the result of executig

printf("%d\n", 3*5*7*11*13*17);

is that it displays

255255,

which is like a machine dispensing that number of dollars as 5 singles, 5 tens, 2
hundreds, and so on, until it dispenses 2 hundred-thousand dollar bills. But what
it really is, is expressing a number as a decimal numeral.

Executing

printf("%d\n", 3*5*7*11*13*17);

is like setting n equal to 3× 5× 7× 11× 13× 17 and solving the equation

n = d0 + 10× (d1 + 10× (d2 + 10× (d3 + 10× (d4 + 10× d5))))

where d0, d1, d2, . . . are the numbers of ones, tens, hundreds, . . . Of course six
unknowns are not determined by a single equation. The information we use in
addition is that d0 has to be as large as possible under the constraint that it be at
most 9. Given the value of d0, the same has to hold for d1. And so on for d2, d3,
d4, and d5. See Program 14.1 Base Conversion.

The hexadecimal digits are the sixteen symbols

0 1 2 3 4 5 6 9 A B C D E F

The same system naturally extends to the 62 symbols

0 1 2 3 4 5 6 9 A B ... X Y Z a b ... x y z

This is why the precondition allows the base to be up to 62. Of all these possible
bases only 2 (binary), 8 (octal), 10 (decimal), and 16 (hexadecimal) are widely used.

The conversion problem is simplified by the fact that each numeral position
is the remainder to the same base. Some problems are base conversion problems
disguised by the different positions indicating remainders to different bases.

The output of Program 14.1 is Figure 14.2.

14.2 Making change

When a transaction leaves a vending machine with an amount owing, it needs
to convert that amount to an equivalent set of coins. Such a conversion can be
expressed mathematically by the equation

a = 5n+ 10(d+ 25q)

where a, n, d, and q are the amount to be changed and the numbers of nickels,
dimes, and quarters, respectively.

See Program 14.3, Making Change.

14.2. MAKING CHANGE 177

1 #include <stdio.h>
2 #include <string.h>
3
4 void reverse(char s[], int m, int n) {
5 // Purpose: reverse order of characters in s[m..n].
6 // Precondition: s[m..n] is allocated.
7 char temp;
8 for (; m<n; ++m, --n) {
9 temp = s[m]; s[m] = s[n]; s[n] = temp;

10 } }
11 char conv(int d) {
12 // Purpose: convert digit d to ASCII character.
13 // Preconditions: 1 < d <= 62.
14 return d<10 ? ’0’ + d :
15 d<36 ? ’A’ + d - 10 : ’a’ + d - 36;
16 }
17 int numConv(char s[], int x, int b) {
18 // Purpose: write in s[] the base-b numeral for x as a null-
19 // terminated string with the most significant digit first,
20 // without leading zeros, preceded by the sign, except when x==0.
21 // In that case the string consists of the digit 0 only.
22 // Return the length of the numeral without the sign character.
23 // Preconditions: 62 >= b > 1, string length of s at least 33.
24 int i;
25 if (x == 0) { s[0] = ’0’; s[1] = ’\0’; return 1; }
26 if (x < 0) { s[0] = ’-’; x = -x; } else s[0] = ’ ’;
27 for (i = 1; x > 0; i++, x /= b) s[i] = conv(x%b);
28 s[i] = ’\0’;
29 reverse(s, 1, strlen(s)-1);
30 return i-1; // not counting the sign character
31 }
32 int main() {
33 int n = 33; char s[n];
34 int m = 6; int b[] = {2,8,10,16,60,62};
35 for (int i = 0; i<m; i++)
36 printf("base: %d; length: %d; numeral: %s\n"
37 , b[i], numConv(s, 123456789, b[i]), s
38);
39 }

Figure 14.1: Base Conversion, a function to convert a given number to a numeral
in a given base.

178 CHAPTER 14. CONVERSION BETWEEN NUMERAL BASES

base: 2; length: 27; numeral: 111010110111100110100010101
base: 8; length: 9; numeral: 726746425
base: 10; length: 9; numeral: 123456789
base: 16; length: 7; numeral: 75BCD15
base: 60; length: 5; numeral: 9VXX9
base: 62; length: 5; numeral: 8M0kX

Figure 14.2: Output of Program 14.1.

0 #include <stdio.h>
1
2 int main() {
3 printf("Input a positive multiple of 5.\n");
4 int amt; scanf("%d", &amt);
5 printf("%d cents changed to %d quarters ", amt, amt/25);
6 amt %= 25; printf("%d dimes ", amt/10);
7 amt %= 10; printf("%d nickels\n", amt/5);
8 }

Figure 14.3: Making Change, a program to compute change owing.

14.3 Numerals in heterogeneous base

When we read that Valerie Radcliffe of the UK won the London Marathon in 2003
in the (then) record time of 2:15:25, we are looking at a base-60 numeral. For longer
time periods our conventional way of naming time periods becomes a heterogeneous
base, because there are 24 hours to a day and seven days to a week. Beyond weeks
the system becomes worse than heterogeneous: the bases even become variable.

Given a nonnegative integer n, the program we have in mind prints the equivalent
of n seconds in s seconds (0 ≤ s < 60), m minutes (0 ≤ m < 60), h hours
(0 ≤ h < 24), d days (0 ≤ d < 7), and w weeks (0 ≤ w).

As there are 7 days in a week, d days and w weeks is d+ 7w days. Similarly, h
hours and d days is h+ 24d hours, m minutes and h hours is m+ 60h minutes, and
s seconds and m minutes is s+ 60m seconds.

Putting this all in a single formula gives

n = s+ 60(m+ 60(h+ 24(d+ 7w))).

As we want s to be less than 60, we have that s is the remainder on division of n
by 60. We also have

(n− s)/60 = m+ 60(h+ 24(d+ 7w)).

14.4. EXERCISES 179

So, after we assign to s the remainder on dividing n by 60 and then assign to n the
integer part of n/60, as in

s = n%60; n = n/60;

we have
n = m+ 60(h+ 24(d+ 7w))

and we are left with a less complex problem. Moreover this simpler problem is
similar to the original. In turn, we determine m, h, d, and w in the same way.

00 #include <stdio.h>
01
02 int main() {
03 printf("Input the number of seconds:\n");
04 int n; scanf("%d", &n);
05 printf("%d seconds is equivalent to:\n", n);
06 printf("%d second(s)\n", n%60);
07 printf("%d minute(s)\n", (n /= 60)%60);
08 printf("%d hour(s)\n", (n /= 60)%24);
09 printf("%d day(s)\n", (n /= 24)%7);
10 printf("%d week(s)\n", n/7);
11 }

Figure 14.4: Time Period, a program to print n seconds as seconds, minutes, days,
hours, and weeks.

Suppose we have estimated that some program takes, for a certain input, a
million seconds to execute. Does that leave us time to go out for lunch? We consult
Program 14.4, Time Period. User input is indented.

Input the number of seconds:
1000000

1000000 seconds is equivalent to:
40 second(s)
46 minute(s)
13 hour(s)
4 day(s)
1 week(s)

14.4 Exercises

14.4.1 Time Period

Program 14.4 first prints out the number of seconds, then the minutes, and so on
until the number of weeks is printed last. This is the wrong order: the first thing

180 CHAPTER 14. CONVERSION BETWEEN NUMERAL BASES

we want to know is the number of weeks, and the number of seconds last, if at all.
Modify accordingly.

14.4.2 Numerals in English

void num(int n);
// Purpose: Print n in English.
// Preconditions: 0 < n <= 999,999

Examples (user responses indented):

Enter a number in 0..999999 in decimal digits.
0

N in English:
zero

Enter a number in 0..999999 in decimal digits.
999999

N in English: nine hundred ninety-nine thousand nine hundred ninety-nine

Enter a number in 0..999999 in decimal digits.
20

N in English: twenty

Enter a number in 0..999999 in decimal digits.
21

N in English: twenty-one

Enter a number in 0..999999 in decimal digits.
100001

N in English: one hundred thousand one

Enter a number in 0..999999 in decimal digits.
10011

N in English: ten thousand eleven

Chapter 15

Numerics

15.1 Numerical differentiation

Differentiation and integration are the fundamental operations of the calculus.
There we learn rules for these operations on the basis of the nature of the func-
tion to be differentiated or integrated. Sometimes the rules are difficult to apply.
Sometimes the rules fail and we have to be quite ingenious, as, for example, when
we want to evaluate

∫∞
0
e−x2

dx.
In calculus the result of differentiation or integration is always a formula. This

formula can then be used to get any numbers we may need. Sometimes we do not
need the result as a formula, but are only interested in the numerical value of a
derivative or integral at a given point. In the case of the derivative we speak of
numerical differentiation. We use as starting point the definition of the derivative
of a function f at parameter value x as

lim
h→0

f(x+ h)− f(x)
h

.

We cannot evaluate this for h = 0. What we do instead is choose such a small value
of h that we get a good approximation of the limit, and thereby of the value of the
derivative at x.

Because we take a finite value of h we are not approximating the derivative at
x but rather at some point between x and x + h. To avoid this bias we use the
definition

lim
h→0

f(x+ h)− f(x− h)
2h

.

This is equivalent for well-behaved functions.
Hence the function definition

double deriv(double (*f)(double), double x, double h) {
return ((*f)(x+h) - (*f)(x-h))/(2*h);

}

181

182 CHAPTER 15. NUMERICS

This definition leaves it up to the user to choose a suitable value for h. This is
not easy. If we choose h much too small we will find that x+h or x-h evaluates to
the same number as x. Even when this phenomenon does not occur, a too small
value of h will cause rounding errors in the evaluation of f to have an unnecessarily
large influence on the result. On the other hand, if we choose h too large, we are
approximating the derivative at a point that is unnecessarily far away from x.

Program 15.1 computes approximations for the derivative of sin(1/x) at x = 0.01
for various values of h.

1 #include <stdio.h>
2 #include <math.h>
3
4 double f1(double x) { return(-cos(1.0/x)/(x*x)); }
5 double f(double x) { return(sin(1.0/x)); }
6
7 double deriv(double (*f)(double), double x, double h) {
8 // Purpose: return approximation to the derivative of f at x.
9 // Preconditions: f differentiable around x and h > 0.

10 return ((*f)(x+h) - (*f)(x-h))/(2*h);
11 }
12 int main() {
13 printf("analytic value: %4.15lf\n", f1(0.01));
14 double h; int n;
15 for (h = 1.0e-1, n = 1; n<20; h /= 10, ++n)
16 printf("- log h: %2d; deriv: %22.15lf\n",
17 n, deriv(&f, 0.01, h));
18 }

Figure 15.1: Numerical differentiation of f(x) = sin(1/x) at x = 0.01 for values
of h ranging from too large to too small. The analytically determined derivative
f1(x) = − cos(1/x)/x2 is evaluated at x = 0.01 for comparison.

Numerical differentiation works best when the function changes slowly. To high-
light the potential difficulties I have chosen as function to be differentiated sin(1/x),
which changes more and more rapidly as x approaches 0. In Figure 15.2 we see the
output of Program 15.1.

Because of the rapid fluctuation of the function it is important that h be chosen
small enough: for the larger values the result is nowhere near the correct value. This
is because h spans several cycles of sin(1/x). As h approaches 10−9 agreement with
the correct value improves. Further decrease in h results in a decrease in accuracy
due to rounding errors. As h approaches zero, (f(x+h)− f(x−h))/2h approaches
the undefined expression 0/0. When x = h the formula gives division by 0, which
is an error. This shows up as nan instead of a numeral; nan stands for “Not A
Number”.

15.2. INTEGRATION BY MONTE CARLO SIMULATION 183

analytic value: -8623.188722876839165
- log h: 1; deriv: -3.328161668207064
- log h: 2; deriv: nan
- log h: 3; deriv: 555.383031209733531
- log h: 4; deriv: -7298.881615648508159
- log h: 5; deriv: -8609.337986153235761
- log h: 6; deriv: -8623.050153572479758
- log h: 7; deriv: -8623.187337153391127
- log h: 8; deriv: -8623.188708684057929
- log h: 9; deriv: -8623.188719358851813
- log h: 10; deriv: -8623.188639811371104
- log h: 11; deriv: -8623.189434731057190
- log h: 12; deriv: -8623.195546508808548
- log h: 13; deriv: -8623.219915904199297
- log h: 14; deriv: -8623.346481329006565
- log h: 15; deriv: -8614.775559578902175
- log h: 16; deriv: -8700.817843987351807
- log h: 17; deriv: -8582.023980352460057
- log h: 18; deriv: -12212.453270876721945
- log h: 19; deriv: 0.000000000000000

Figure 15.2: Output of Program 15.1. The right-hand column shows numerical
approximations to the derivative of sin(1/x) at x = 0.01 for various values of h,
which are indicated by − log10 h. Apparently the best value for h is 10−9: the
numerical derivative agrees with the analytic value over the first nine digits.

15.2 Integration by Monte Carlo simulation

Suppose we have plotted on a sheet of paper the graph of a positive function f(x)
between x-values a and b. The lower edge of the paper is the X-axis. The sides of
the paper are the lines x = a and x = b. The top of the plot just hits the top of the
paper. Suppose furthermore that we throw darts at the paper in such a way that
every point on the sheet is equally likely to get hit by a dart. In this set-up we can
estimate

∫ b

a
f(x)dx, which is the area under the graph of f , from the proportion of

dart hits that fall under the graph of f .
This is the idea behind Program 15.3, Monte Carlo. To simulate the behaviour

of the darts, we use a random-number generator. Its functionality is supplied by
the functions rand and srand from the library that we include by the line

#include <stdlib.h>

Every call to rand delivers a randomly selected integer in the range from 0 to
RAND_MAX. The function is implemented in such a way that each integer in this
range has an equal probability of being the result.

184 CHAPTER 15. NUMERICS

00 #include <stdio.h>
01 #include <math.h> // for sqrt()
02 #include <stdlib.h> // for rand() srand() RAND_MAX
03
04 double f(double x) { return sqrt(1 - x*x); }
05 const double maxRand = (double)RAND_MAX;
06
07 double M_C(double a, double b, double bound,
08 long count, double (*f)(double)) {
09 // Purpose: approximate integral of f over interval [a,b]
10 // by Monte-Carlo simulation.
11 // Preconditions: a < b, bound > maximum of f over [a,b],
12 // and count is number of samples
13 double x, y; int hits = 0;
14 for (int i = 0; i < count; i++) {
15 x = a + (b-a)*(rand()/maxRand);
16 y = bound*(rand()/maxRand);
17 if (y < (*f)(x)) hits++;
18 }
19 return ((double)hits/count)*(b-a)*bound;
20 }
21 int main() {
22 srand(12345);
23 printf("%lf\n", 4*M_C(0,1.0,1.0,1e6,&f));
24 printf("%lf\n", 4*M_C(0,1.0,1.0,1e6,&f));
25 }

Output:

3.141120
3.142524

Figure 15.3: Monte Carlo, using Monte Carlo simulation to estimate π = 4
∫ 1

0

√
(1−

x2)dx.

A simulation program obtains random numbers by successive calls to rand.
However, the numbers are not truly random. Each is in fact determined by the
previous one. The result of the first call to rand is determined in the same way by
the parameter of the last call to srand (from set random) preceding that first call.
In this way we are assured that every execution of the program yields the same
result, even though for the purposes of estimating the integral the successive values
can be considered random.

The function M_C recognizes that it may be difficult to know the exact maximum
of the function over the interval [a, b]. In effect, it gives the paper that we throw
darts at a height given by the formal parameter bound. As long as we ensure that
its value exceeds all function values in [a, b], we get the correct result in the limit
as we increase the number of throws of darts.

In the function M_C the x-coordinate of the place where a dart hits is stored

15.3. NUMERICAL INTEGRATION BY SIMPSON’S FORMULA 185

in the variable x. The y-coordinate goes into y. Whether the hit falls in the area
under the graph is determined by the test y < f(x).

The Monte Carlo method is only recommended for nested integrals, like∫ b0

a0

∫ b1

a1

∫ b2

a2

f(x, y, z)dxdydz.

For a single integral like
∫ b

a
f(x)dx more accurate methods are feasible. These

include the trapezoidal rule and Simpson’s formula.

15.3 Numerical integration by Simpson’s formula

The integral
∫ b

a
f(x)dx from a to b of a function f of one variable can be visualized as

the area between a and b under the graph of the function.
∫ b

a
f(x)dx = I(b)− I(a),

where I is the anti-derivative of f . Sometimes it is easy to find a formula for I. For
example, if f(x) is x2, then I(x) is x3/3, so that we get 7/3 for

∫ 2

1
f(x)dx.

Here we have obtained the numerical value by means of analytical (also called
symbolic integration). If we don’t want to, or are unable to, find a formula for I,
then we can compute a numerical approximation of the required area, using only a
formula for f . Such a computation is called numerical integration.

The crudest approximation is a straight line connecting f(a) and f(b) in the
graph. The integral

∫ b

a
f(x)dx is then approximated by

T1(a, b) = (f(a) + f(b)) ∗ (b− a)/2.

This is called T1 because the area bounded by the straight line is a trapezoid.
The subscript 1 is because we have spanned the entire area to be integrated by
a single trapezoid. We get a better approximation T2(a, b) by doing the same
for the left and right halves of the interval from a to b. This gives T2(a, b) =
T1(a, (a+ b)/2) + T1((a+ b)/2, b).

T2 uses three function values, which is enough to uniquely determine a quadratic
polynomial to go through these points. Hence it should be possible to get the
approximation exact when f is a quadratic polynomial. But T2 does not live up to
this ideal.

Paradoxically, we can get a better approximation by using not T2 only, but by
combining it with the worse approximation T1. If we do this in the right way, we
get S1 = T2 + (T2 − T1)/3, where (T2 − T1)/3 is the correction term to be applied
to T2. S1 not only gives an exact result for quadratic polynomials, but throws in
exactness for cubic polynomials as a bonus. S1 is named that way because it is
equivalent to Simpson’s integration formula.

With three function values, we not only get the superior approximation S1, but
also the correction term (T2−T1)/3, which usually tells us how good an approxima-
tion S1 is. This suggests the following problem reduction for numerical integration
of function f from a to b:

186 CHAPTER 15. NUMERICS

1. If the correction term is below a certain predetermined tolerance τ , then accept
S1 as the result with estimated accuracy of τ .

2. Otherwise, the result is the sum of the results of the same procedure ap-
plied to the left half of the interval [a, b] and the result of applying it to the
corresponding right half, each with tolerance τ/2.

The more a function differs from a cubic polynomial, the more deeply such
problem reductions are nested. As long as the function is continuous, the intervals
ultimately become small enough that the difference with a cubic is negligible and
then the correction falls below the tolerance so that further splitting is not necessary.

The attraction of problem reduction here is that we do not have to determine
in advance how narrow the ultimate intervals are going to be. Problem reduction
ensures that subdivision only happens as far as necessary. It adapts to the local
behaviour of the function. This method could therefore be called adaptive Simpson
integration∗.

The property of being adaptive may result in considerable savings in compu-
tation. This is illustrated by the call to adSimp shown in Figure 15.4. For this
integration the smallest interval in some areas had a width of 2−4, while in other
areas this width was 2−18. If the entire integration interval from 0 to 1 had to
be covered by this narrowest width of interval, then 218, which is about a quarter
million, calls to as would be needed. In this example that number was 109.

The function on which the problem reduction is based has as header

double as(double a, double b,
double fa, double fb,
double tau, double (*f)(double))

The integration problem is completely specified by parameters a, b, tau, and f. To
avoid re-computing function values, we have made fa and fb parameters as well.

In Figure 15.4 we see the problem reduction expressed in the function

double as(double a, double b,
double fa, double fb,
double tau, double (*f)(double)) {

... T2 = ... corr = ...
if (corr < tau && -corr < tau) return T2+corr;
return as(a, m, fa, fm, tau/2.0, f) +

as(m, b, fm, fb, tau/2.0, f);
}

The function adSimp is only a shell around function as. The shell is introduced
so that the user has to enter no more than the minimum required to specify the
integration problem.

∗But this term usually means a related procedure.

15.4. NUMERICAL ALGEBRA 187

1 #include <stdio.h>
2 #include <math.h> // for sqrt
3
4 double f(double x) { // circle with unit radius
5 return sqrt(1.0 - x*x);
6 }
7 double trap(double a, double b, double fa, double fb) {
8 // area of trapezoid
9 return (b-a)*(fa + fb)/2.0;

10 }
11 double as(double a, double b,
12 double fa, double fb,
13 double tau, double (*f)(double)) {
14 // function auxiliary to adSimp()
15 double T1 = trap(a,b,fa,fb);
16 double m = (a+b)/2.0;
17 double fm = (*f)(m);
18 double T2 = trap(a,m,fa,fm) + trap(m,b,fm,fb);
19 double corr = (T2-T1)/3.0;
20 if (corr < tau && -corr < tau) return T2+corr;
21 return as(a, m, fa, fm, tau/2.0, f) +
22 as(m, b, fm, fb, tau/2.0, f);
23 }
24 double adSimp(double a, double b,
25 double tau, double (*f)(double)) {
26 // Purpose: return integral of f from a to b with tolerance tau
27 // Preconditions: a < b, 0 < tau, f continuous
28 return as(a, b, (*f)(a), (*f)(b), tau, f);
29 }
30 int main() {
31 printf("%lf\n", 4*adSimp(0.0, 1.0, 1.0e-4, &f));
32 }

Output:

3.141593

Figure 15.4: Adaptive Simpson, integration based on the trapezoidal approximation.

15.4 Numerical Algebra

An important class of problems leads to a system of n linear equations in n un-
knowns. It is not uncommon for n to run into many thousands. For some applica-
tions n is whatever the capacity of the computer system will carry.

Solution methods are studied by means of linear algebra. Consider a system of
equations such as

a00x0 + a01x1 + a02x2 = b0

188 CHAPTER 15. NUMERICS

a10x0 + a11x1 + a12x2 = b1 (15.1)
a20x0 + a21x1 + a22x2 = b2

where x0, x1 and x2 are the unknowns. The aij are known quantities, the coeffi-
cients. The bi are known quantities, the right-hand sides. The system (15.1) can
be written as Ax = b, where A is a matrix with n rows and n columns; x and b, are
column vectors each with n elements. When discussing the general n-dimensional
case, we display the examples with n = 3. This saves a lot of tiresome occur-
rences of “. . .”. The vectors are stored as one-dimensional arrays; the matrix as a
two-dimensional array.

As a concrete example consider the network of resistors shown in Figure 15.5.
Suppose we maintain a voltage V at one terminal and ground the other. What are
the voltages at v0 and v1 and what are the currents through each of the resistors?

I0

r3

r4

r5 i5

i4

i2

i8

r0 i0

r1 i1

r2

i6

i3

V

I1

v0

v1

Figure 15.5: A network of resistors to be modeled as a system of linear equations.
V , v0, and v1 are the voltages at the accompanying points; r0, . . . , r5 are resistances
given in kiloOhm. The problem is to determine the currents I0, I1, i8, i0, . . . , i6 and
the voltages v0 and v1, given V and r0, . . . , r5.

When I start by writing equations expressing immediately obvious facts such
as I0 = I1, i2 = i6, and i3 = i8, then I get into trouble by ending up with too
many unknowns, or too few. Even with small examples like this we need to follow
a systematic approach; for large networks this is the only way.

The systematic way is to apply Kirchhoff’s Current Law at every junction, which
gives:

I0 − i6 − i3 = 0 (15.2)
i6 − i0 − i1 = 0 (15.3)
i1 + i0 − i2 = 0 (15.4)
i3 − i5 − i4 = 0 (15.5)

15.4. NUMERICAL ALGEBRA 189

i4 + i5 − i8 = 0 (15.6)
i2 + i8 − I1 = 0 (15.7)

and Kirchhoff’s Voltage Law at every voltage drop, which gives:

V − v0 = i0r0 (15.8)
V − v0 = i1r1 (15.9)
V − v1 = i3r3 (15.10)

v0 = i2r2 (15.11)
v1 = i4r4 (15.12)
v1 = i5r5 (15.13)

In this way we get 12 independent equations in 12 unknowns. Such a system
has, according to linear algebra, a unique solution. In linear algebra such a system
is written as Ax = b, where A is a 12-by-12 matrix and x and b are vectors of
size 12. A contains the coefficients, x contains the unknowns, and b contains the
right-hand-sides.

In this example the correspondence between x0, . . . , x11 and the physical quan-
tities of Figure 15.5 is as follows:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

I0 i0 i1 i2 i3 i4 i5 i6 i8 v0 v1 I1

I0 i0 i1 i2 i3 i4 i5 i6 i8 v0 v1 I1 rhs eq. no.
1 0 0 0 −1 0 0 −1 0 0 0 0 0 15.2
0 −1 −1 0 0 0 0 1 0 0 0 0 0 15.3
0 1 1 −1 0 0 0 0 0 0 0 0 0 15.4
0 0 0 0 1 −1 −1 0 0 0 0 0 0 15.5
0 0 0 0 0 1 1 0 −1 0 0 0 0 15.6
0 0 0 1 0 0 0 0 1 0 0 −1 0 15.7
0 r0 0 0 0 0 0 0 0 1 0 0 V 15.8
0 0 r1 0 0 0 0 0 0 1 0 0 V 15.9
0 0 0 0 r3 0 0 0 0 0 1 0 V 15.10
0 0 0 −r2 0 0 0 0 0 1 0 0 0 15.11
0 0 0 0 0 −r4 0 0 0 0 1 0 0 15.12
0 0 0 0 0 0 −r5 0 0 0 1 0 0 15.13

Figure 15.6: Matrix A of coefficients of the linear equations modeling the resistor
network in Figure 15.5. The column with the heading “rhs” shows the right-hand
sides of the equations.

Let us now write a function that solves Ax = b; a function that, with A and b
as input, produces x as output. Solving such systems is one of the most intensively

190 CHAPTER 15. NUMERICS

researched areas in all of computer science. Widely available software packages
embody the result of this research. Use such a package whenever possible. The
only reason for including the topic in this book is to enhance your programming
skill: to be able to translate to code something you know how to do with pencil
and paper. In case you don’t know how to do it with pencil and paper, I’ll start by
showing you how.

We use the simplest method for solving a system of linear equations: Gaussian
elimination. This method is based on the fact that when you add a multiple of an
equation to another, the solutions to the system do not change. With a suitable
choice of this multiple one of the variables has been eliminated from the resulting
equation. Thus system (15.1) is transformed to

a00x0 + a01x1 + a02x2 = b0

a′11x1 + a′12x2 = b′1 (15.14)
a′21x1 + a′22x2 = b′2

This system is obtained by adding −a10/a00 times the first equation to the
second, −a20/a00 times the first equation to the third, and so on. In matrix form
system (15.14) is A′x = b′. This has the same solutions as Ax = b, but is easier
to solve because the first column has zeros from the first row on down. The same
method can be used to create zeros in the second column below the second row.
After a third, similar, step we have A′′x = b′′ with the same solutions as Ax = b,
where A′′ has zeros everywhere below the diagonal. Written out in full, A′′x = b′′

is

a00x0 + a01x1 + a02x2 = b0

a′11x1 + a′12x2 = b′1 (15.15)
a′′22x2 = b′′2

This form is called upper-triangular; the first stage of Gaussian elimination is trans-
formation to upper-triangular form.

The advantage of this form is that such equations are easy to solve: it is imme-
diate that x2 = b′′2/a

′′
22. We note this result and we remove the last equation from

the system. The value just found for x2 is substituted into the second equation, so
that it becomes

a′′11x1 = b′′1 − a′′12b2/a′′22.

Similar substitutions remove the terms with x2 from the two equations. This trans-
formation of a three-dimensional upper-triangular system to a two-dimensional
upper-triangular one is called a back substitution step. As the resulting system
is upper-triangular, back substitution can be applied again. In this way repeated
back substitution steps yield the values of all the three unknowns x0, x1, and x2,
thus completing the solution by Gaussian elimination.

15.4. NUMERICAL ALGEBRA 191

The fact that Gaussian elimination is composed of two stages, transformation
to upper-triangular form followed by back substitution, suggests that the function
for solving a linear system have the following definition:

void linSol(double** ab, int n, double x[]) {
uppTri(ab, n);
backSubst(ab, n, x);

}

where uppTri is defined as in Program 15.7: Upper Triangular. Program 15.8:
Back Substitution shows the function backSubst.

1 void uppTri(double** ab, int n) {
2 // Purpose: transform linear system Ax = b to upper triangular form.
3 // Preconditions: n>1 and ab[0..n-1][0..n] contains the coeff.
4 // in the first n columns and has b in the last column.
5 for(int i=0; i<n; i++) {
6 // there are zeroes below the diagonal in columns 0..i-1
7 // sweep column i to zeroes
8 for(int j=i+1; j<n; j++) {
9 // j marches down the i-th column from the diagonal downwards

10 // add multiple of i-th row to j-th row
11 double mult = -ab[j][i]/ab[i][i];
12 for(int k=i; k <= n; k++) {
13 // sweep elements of j-th row
14 ab[j][k] += mult*ab[i][k];
15 } } } }

Figure 15.7: Upper Triangular, a function for transformation to upper-triangular
form.

We now return to the equations generated by the network in Figure 15.5. In
Program 15.9: Resistors, the array data[12][13] contains in its first 12 columns
the coefficients of the A in Ax = b while the 13th column contains the vector b
of the right-hand sides. A call to linSol produces the vector x of values for the
unknowns:

// I0 i0 i1 i2 i3 i4 i5 i6 i8 v0 v1 I1
1.3 0.2 0.1 0.2 1.1 1.0 0.1 0.2 1.1 11.2 9.7 1.3

where we added as annotation the names of the unknowns in Program 15.9 and
Figure 15.5.

Before leaving this topic I should confess to some cheating to make the solving of
linear equations seem easier than it actually is. You may have wondered about the
idiosyncratic order of the rows in the array data[12][13]. The reason is that there
is a good chance that it does not work if you choose an order that does not jump

192 CHAPTER 15. NUMERICS

1 void backSubst(double** ab, int n, double x[]) {
2 // Purpose: perform back substitution on linear system Ax = b.
3 // Preconditions: n>1 and ab[0..n-1][0..n] contains the coeff.
4 // in the first n columns and has b in the last column.
5 // A is in upper-triangular form.
6 for(int i=n-1; i >= 0; i--) {
7 // Find x[i] from i-th equation.
8 x[i] = ab[i][n]/ab[i][i];
9 // Substitute this value in equations 0,...,i-1

10 // and subtract from right-hand side.
11 for(int j=i-1; j >= 0; j--) {
12 // Right-hand side is in ab[j][n]
13 ab[j][n] -= x[i]*ab[j][i];
14 }
15 // From now on, forget about column i above diagonal.
16 } }

Figure 15.8: Back Substitution, a function for back substitution in a system of
linear equations in upper-triangular form.

all over the diagram. “Does not work” means specifically that line 10 in uppTri in
Program 15.7 encounters the value zero for ab[i][i] (called the “pivot”). At the
least, uppTri should not always use the next row, but search candidate rows for
one with a nonzero value.

Not only zero values cause uppTri to go awry: values that are too close to zero
can lead to solutions that range from merely inaccurate to nonsense. The least a
proper version of uppTri should do is to search for a row that has an entry in the
i-th column with greatest absolute value. This strategy is called “partial pivoting”.
The “partial” suggests that one can be more ambitious in this respect.

At least one widely available software package can be relied on to give you the
use of a state-of-the-art version of Gaussian elimination. Chances are that whatever
system of linear equations you encounter in practice requires some other algorithm:
perhaps Gauss-Jordan elimination, LU decomposition, Gauss-Seidel iteration, or
Successive Overrelaxation.

15.4. NUMERICAL ALGEBRA 193

1 void uppTri(double** ab, int n);
2 void backSubst(double** ab, int n, double x[]);
3 void linSol(double** ab, int n, double x[]) {
4 // Purpose: return in x[0..n-1] solution of linear system Ax = b.
5 // Precondition: ab[n][n+1] contains the coefficients A in the
6 // first n columns and b in the last column.
7 uppTri(ab, n);
8 backSubst(ab, n, x);
9 }

10 int main() {
11 double const V=12, // Volt
12 r0=4.7, r1=10, r2=47.7, r3=2.2, r4=10, r5=100; // kOhm
13 double data[12][13] = {
14 // 12 unknowns, followed by Right-Hand Side: eq. no.
15 // I0, i0, i1, i2, i3, i4, i5, i6, i8, v0, v1, I1, RHS
16 { 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0}, //15.2
17 { 0, -1, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, //15.3
18 { 0, 0, r1, 0, 0, 0, 0, 0, 0, 1, 0, 0, V}, //15.9
19 { 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, -1, 0}, //15.7
20 { 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0}, //15.5
21 { 0, 0, 0, 0, 0,-r4, 0, 0, 0, 0, 1, 0, 0}, //15.12
22 { 0, 0, 0, 0, 0, 0,-r5, 0, 0, 0, 1, 0, 0}, //15.13
23 { 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, //15.4
24 { 0, 0, 0, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0}, //15.6
25 { 0, r0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, V}, //15.8
26 { 0, 0, 0, 0, r3, 0, 0, 0, 0, 0, 1, 0, V}, //15.10
27 { 0, 0, 0,-r2, 0, 0, 0, 0, 0, 1, 0, 0, 0}};//15.11
28 const int n = 12; double x[n]; double* ab[n];
29 for(int i=0; i<n; i++) ab[i] = &data[i][0];
30 linSol((double**)ab, n, x);
31 for (int i = 0; i < n; i++) printf("%2.1lf ", x[i]);
32 printf("\n");
33 }

Figure 15.9: Resistors, a program for determining the currents and voltages in
Figure 15.5. Compare the initialization of data[12][13] with the matrix in Fig-
ure 15.6. Rows needed to be permuted because of the absence of partial pivoting
in uppTri.

194 CHAPTER 15. NUMERICS

15.5 Exercises

15.5.1 Simpson’s method

Section 15.3 is based on the trapezoid approximation for the integral, as expressed
in

double trap(double a, double b, double fa, double fb) {
// area of trapezoid
return (b-a)*(fa + fb)/2.0;

}

where fa and fb are the function values at a and b, respectively.
If one adds fm, the function value at the point midway between a and b, then

one can obtain a more accurate estimate by means of Simpson’s formula, which is
given by

double simpson(double a, double b,
double fa, double fm, double fb) {

return (b-a)*(fa + 4.0*fm + fb)/6.0;
}

In this way we get an estimate S1 for the interval [a, b]. If we call S2 the estimate
obtained with Simpson’s formula applied to the left and the right halves of this
interval separately, then the optimal correction is (S2 − S1)/15.

Modify Program 15.4 to incorporate these improvements.

15.5.2 Testing with the Fundamental Theorem

Let f ′ be the derivative of a real-valued function f of a real variable. According
to the Fundamental Theorem of Calculus we have

∫ b

a
f ′(x)dx = f(b) − f(a) and

d
dx

∫ x

a
f(y)dy = f(x). This exercise is to use these equalities to test numerical

differentiation and numerical integration together. In Program 15.10 add a suitable
definition of function f. You can use the definitions of trap, as, and adSimp defined
elsewhere in this chapter.

In the definition of fPrime we have followed the recommendation of the experts†

for the best value of h in function deriv.

15.5.3 Linear combination of two vectors

The linear combination of two n-dimensional vectors a and b is the n-dimensional
vector c defined as ci = µai + νbi for all i = 0, . . . , n − 1, where µ and ν are real
valued coefficients, the weights; think of c as the weighted average of a and b. In
Program 15.11 add a definition of the function linComb that replaces its parameter
a with the linear combination of a and b with weights mu and nu.

†Numerical Recipes in C by Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling.

15.5. EXERCISES 195

00 #include <stdio.h>
01 #include <math.h> // for fabs, sqrt
02 #include <float.h> // for DBL_EPSILON
03
04 double f(double x);
05 double adSimp(double a, double b,
06 double tau, double (*f)(double));
07
08 double deriv(double (*f)(double), double x, double h) {
09 return ((*f)(x+h) - (*f)(x-h))/(2.0*h);
10 }
11 double fPrime(double x) {
12 return deriv(&f, x, sqrt(DBL_EPSILON));
13 }
14 double f1(double x) {
15 return adSimp(0.0, x, 1.0e-8, &fPrime);
16 }
17 int main() {
18 printf("%lf\n", adSimp(0.0, 0.5, 1.0e-4, &fPrime));
19 printf("should be: %lf\n", f(0.5) - f(0.0));
20 printf("%lf\n", deriv(&f1, 0.5, 1.0e-4));
21 printf("should be: %lf\n", fPrime(0.5));
22 }

Figure 15.10: For Exercise 15.5.2.

00 #include <stdio.h>
01
02 void linComb(double a[], double b[], int n,
03 double mu, double nu);
04 int main() {
05 double a[] = {0,1,2,3,4,5,6,7,8,9},
06 b[] = {9,8,7,6,5,4,3,2,1,0};
07 int n = sizeof(a)/sizeof(a[0]), i;
08 linComb(a, b, n, 0.5, 0.5);
09 for(i = 0; i<n; i++) printf("%1.1f ", a[i]);
10 printf("\n");
11 }

Figure 15.11: A function for the linear combination of two vectors.

196 CHAPTER 15. NUMERICS

15.5.4 Inner product

For two vectors a and b of length n, the inner product a · b of a and b is defined by
the formula a · b =

∑n−1
i=0 aibi. The length |a| of a vector a is

√
(a · a), the square

root of the inner product of a with itself. The angle ϕ between a and b satisfies
cosϕ = a · b/(|a| ∗ |b|). Program 15.12 uses these formulas for a case that can easily
be verified with pencil and paper. The interesting thing about vectors is that they
exist in any number of dimensions, and the function iProd works for all them: two
(as in this call), three, four (already difficult to visualize), ten, a thousand, or any
finite number of dimensions.

Add the definition of iProd to Program 15.12.

1 #include <stdio.h>
2 #include <math.h>
3
4 double iProd(double a[], double b[], int n);
5 // Purpose: return inner product of a and b of length n.
6 // Preconditions: n > 0.
7 const double degRad = 180.0/M_PI;
8 // Number of degrees in a radian.
9 // M_PI is the library’s value for number pi.

10 int main() {
11 double a[] = {1.0,0.0}, b[] = {1.0, sqrt(3.0)};
12 int n = sizeof(a)/sizeof(a[0]);
13 double lenA = sqrt(iProd(a, a, n));
14 double lenB = sqrt(iProd(b, b, n));
15 printf("lengths of a and b: %f %f\n", lenA, lenB);
16 printf("angle between a and b: %f degrees\n",
17 degRad * // convert radians to degrees
18 acos(iProd(a, b, n)/(lenA * lenB)));
19 }

Figure 15.12: Example use of a function for the inner product of two vectors.

15.5.5 Evaluating a polynomial

Use inner product for a function that evaluates a polynomial

a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

Chapter 16

Sorting

A common task programming task is to re-arrange a sequence of data into increasing
or decreasing order. This is called sorting. The data need not be numerical: it
often happens that we need to sort words or lines of text in alphabetical order. As
sequences often take the form of an array, it is useful to be able to sort an array.

16.1 Selection sort

Let us consider how to sort an array a of integers. One possibility is to start by
determining the location of a least element of the array and to exchange it with
a[0]. Next, we determine the location of a least element of the remaining part of
the array, and exchanging that element with a[1]. Continuing this way we end up
with all of the array in sorted order. This method is called “selection sort”. Of
course, one can also start at the other end of the array, and then work downwards,
as is done in Program 16.1: Selection Sort.

How long does selection sort take? If the array becomes twice as long, then
the outer loop is executed about twice as many times. But the number of times
the inner loop is executed also doubles. Thus, selection sort takes about four times
as long when the length of the array is doubled. In computing terminology this is
expressed by saying that selection sort has quadratic complexity : the amount of
time it takes to sort an array of length n is proportional to n2.

16.2 Quicksort

We next consider the “quicksort” method of sorting, which has the property that
the amount of time it takes is proportional to n log n to sort an array of length n.
This method was invented by C.A.R. Hoare.

Quicksort begins by finding the correct place for one element, the pivot, in the
sorted version of the array. This preliminary stage is called partitioning. Once
that is done, all one needs to do is to sort the part of the array to the left of the

197

198 CHAPTER 16. SORTING

00 #include <stdio.h>
01
02 void randPerm(int a[], int n);
03 // Purpose: place a random permutation of 0,1,...,n-1 in
04 // a[0..n-1].
05 // Preconditions: n >= 0 and a[0..n-1] allocated.
06
07 // Selection sort
08 void sort(int a[], int n) {
09 // Purpose: to sort a[0..n-1] in non-decreasing order.
10 // Preconditions: n >= 0 and a[0..n-1] allocated.
11 for(--n; n > 0; n--) {
12 int imax = n;
13 for(int i = n-1; i >= 0; i--)
14 if (a[i] > a[imax]) imax = i;
15 int temp = a[imax]; a[imax] = a[n]; a[n] = temp;
16 }
17 }
18 int main() {
19 int numErr = 0, n = 20000, a[n];
20 for(int i = 0; i < n; i++) a[i] = i;
21 srand(4321); randPerm(a, n);
22 sort(a, n);
23 for(int i = 0; i < n; i++) if (a[i] != i) numErr++;
24 printf("number of errors: %d\n", numErr);
25 }

Figure 16.1: Selection Sort, a function for sorting an array.

pivot independently from sorting the part of the array to the right of the pivot.
Partitioning reduces each sorting problem to two smaller sorting problems. These
smaller problems are also solved by quicksort, if there is anything left that needs
sorting.

Partition Partitioning acts on the segment of the array a from index p up to but
not including the element at index q. We denote this segment by a[p..q-1]. Here
is an example of such an array segment.

array content: 4 1 9 2 11 10 3 6 8 0 7 5
array index: p q

The element 4 at index p is taken as the pivot. We call an element “small” if it
is less than or equal to the pivot; “big” if it is greater than or equal to the pivot.

16.2. QUICKSORT 199

The aim of partitioning is to perform element exchanges in such a way that to the
left of the pivot there are only small elements; to the right only big ones.

The sorting algorithm usually does not find this ideal situation in the array.
But something like it can be counted on to exist: we can always find indexes i and
j are such that a[p..i] contains no big elements; a[j..q-1] no small ones. We
choose a[p] as the pivot∗, so we can initialize i to be equal to p. Similarly, we can
initialize j to be equal to q. Because there are no elements in a[q..q-1], we can
safely say that there are no small ones in this segment. After this initialization, we
try to increment i and decrement j while maintaining the property that a[p..i]
contains no big elements and a[j..q-1] contains no small ones.

Because of their role, we call indexes i and j cursors. Partitioning is complete
when we get the cursors next to each other. In the situation depicted below, the
cursors can only be moved further inward after exchanging a[i+1] and a[j-1].

We place - or + above an element according to whether it has been determined
to be small or big, respectively. There is a question mark above it if the element
has not yet been examined. The pivot, being neither small nor big, is marked by a
question mark.

0 - + ? ? ? ? ? ? - + +
array content: 4 1 9 2 11 10 3 6 8 0 7 5
array index: p i j q

After performing this exchange, we have

0 - - ? ? ? ? ? ? + + +
array content: 4 1 0 2 11 10 3 6 8 9 7 5
array index: p i j q

The cursors can move inward some more, until they get stuck in the following
situation:

0 - - - + ? - + + + + +
array content: 4 1 0 2 11 10 3 6 8 9 7 5
array index: p i j q

Cursor i is blocked from moving inward by the big element 11; j is blocked from
moving inward by the small element 3. An exchange of these blocking elements is
called for:

0 - - - - ? + + + + + +
array content: 4 1 0 2 3 10 11 6 8 9 7 5
array index: p i j q

In this way, partitioning alternates between moving the cursors inward as much
as possible and exchanging when they are stuck. But all the time we need to check
whether they run into each other, as they do now:
∗The names p and q were chosen to serve as a nice pair to delimit the segment to be partitioned;

p has nothing to do with the word “pivot”.

200 CHAPTER 16. SORTING

0 - - - - + + + + + + +
array content: 4 1 0 2 3 10 11 6 8 9 7 5
array index: p i j q

Exchanging a[p] and a[i] results in the desired situation of having only small
ones to the left of the pivot element 4; only big ones to the right. Partitioning is
complete.

- - - - 0 + + + + + + +
array content: 3 1 0 2 4 10 11 6 8 9 7 5
array index: p i j q

Program 16.2, Partition, is a function to effect partitioning.

1 void swap(int a[], int i, int j);
2 // Exchanges a[i] and a[j].
3
4 int partition(int a[], int p, int q){
5 // Purpose: partition a[p..q-1]
6 // Precondition: p < q-1 and a[p..q] allocated.
7 if (a[p] > a[q-1]) swap(a, p, q-1);
8 //a[p] <= a[q-1]
9 int i = p, j = q-1;

10 while (1) {
11 //a[p..i] <= a[p] <= a[j..q-1] && i < j
12 while (a[i+1] < a[p]) i++;
13 // i < j && a[i+1] >= a[p]
14 if (i+1 == j) {swap(a, p, i); return i;}
15 while (a[j-1] > a[p]) j--;
16 if (i+1 == j) {swap(a, p, i); return i;}
17 // i+1 < j && a[i+1] >= a[p] >= a[j-1]
18 if (i+1 == j-1) { // a[i+1] == a[j-1] == a[p]
19 i++; swap(a, p, i); return i;
20 } // i+1 < j-1
21 i++; j--; // i < j
22 swap(a, i, j);
23 } }

Figure 16.2: Partition, a function for partitioning an array. The comment a[p..i]
<= a[p] means that no element of the segment a[p..i] is greater than a[p].

The code for quicksort The function partition acts on an arbitrary array
segment a[p..q-1] and returns the index, let us call it m, of the pivot. By also
making sure that to the left of the pivot there are no big elements, nor any small

16.3. QUICKSORT WITH AN EXPLICIT STACK 201

elements to the right, the problem of sorting the whole array is reduced to sorting
independently of each other the segments a[p..m-1] and a[m+1..q-1]. This fact
can be recognized in the definition of qsort1 in Program 16.3.

Quicksort is more complicated than selection sort. Averaged over all permu-
tations of a sufficiently long array, it is also more efficient. A telling observation:
the selection sort shown here took about the same time to sort an array of length
20,000 as it took quicksort to sort an array of length 2,000,000.

1 int partition(int a[], int p, int q);
2 // partitions a[p..q]
3 void qSort1(int a[], int p, int q) {
4 // sorts a[p..q-1]
5 if (p >= q-1) // one element or fewer; do nothing
6 return;
7 int m = partition(a, p, q); // a[m] is in place
8 qSort1(a, p, m); // sort a[p..m-1]
9 qSort1(a, m+1, q); // sort a[m+1..q-1]

10 }
11 void qSort(int a[], int n) { // sorts a[0..n-1]
12 qSort1(a, 0, n);
13 }
14 void randPerm(int a[], int n);
15 // randomly permutes a[0..n-1]
16 int main(){
17 const int n = 2000000; int a[n], numErr = 0;
18 for (int i = 0; i < n; i++) a[i] = i;
19 srand(4321); // sets random-number generator
20 randPerm(a, n); qSort(a, n);
21 for (int i = 0; i < n; i++) if (a[i] != i) numErr++;
22 printf("number of errors: %d\n", numErr);
23 }

Figure 16.3: Quicksort, a program for sorting by the quicksort method.

16.3 Quicksort with an explicit stack

The very idea of the quicksort algorithm is expressed in terms of problem reduc-
tion: after partitioning the array segment p..q-1 at index m, it is sufficient to sort
segments p..m-1 and m+1..q-1 separately. An advantage that most programming
languages have is that the problem reduction can be expressed by solving the two
subproblems as function calls; see Program 16.3, Quicksort.

It will be instructive to see what kind of administration is involved in execut-

202 CHAPTER 16. SORTING

ing a program in which a function contains calls to itself. Let us follow a call
qSort1(a,0,10). Suppose that partition returns 5. This causes qSort1(a,0,10)
to be replaced by qSort1(a,0,5) and qSort1(a,6,10). Execution of the first of
these starts next, so that we now have two unfinished function calls. Suppose that,
in the course of executing qSort1(a,0,5), partition returns 3. That will result in
the following list of pending calls:

qSort1(a,0,3) qSort1(a,4,5) qSort1(a,6,10)

What is returned by partition will depend every time on the contents of a. The
contents could be such that the next list of pending calls is:

qSort1(a,0,1) qSort1(a,2,3) qSort1(a,4,5) qSort1(a,6,10)

Every time execution of no more than one call can be started, while the runtime
system has to remember somehow the remaining pending calls.

Now for the first time the call being executed does not result in calls to qSort1,
giving as next state of the list:

qSort1(a,2,3) qSort1(a,4,5) qSort1(a,6,10)

With certain contents of a, the next states of the list could be:

qSort1(a,4,5) qSort1(a,6,10)
qSort1(a,6,10)
qSort1(a,6,8) qSort1(a,9,10)
qSort1(a,6,7) qSort1(a,8,8) qSort1(a,9,10)
qSort1(a,8,8) qSort1(a,9,10)
qSort1(a,9,10)

This last call does not give rise to further calls, so that after 11 recursive calls
to qSort1, the original call qSort1(a,0,10) is completed†.

The power of the function mechanism is that we only have to state a problem
reduction for the computer to solve the problem without the programmer needing
to be concerned about storing and scheduling pending function calls. This keeps
the quicksort function simple.

The pending calls to the recursive qSort1 function represent a collection that
grows and shrinks as time progresses. It does not matter which call is selected from
the collection when the time comes to execute a function call. By following the
details of the above example we saw that it always selects the most recently added
call to be executed next.

In computing terminology it is said that the collection of pending calls is man-
aged by the last-in, first-out discipline. Such a collection is called a stack, because
this is the way one usually handles a stack of dinner plates. Adding something to
the collection is called “pushing” it onto the stack. Removing something from the
collection is called “popping” it off the stack. This terminology is inspired by the

†A function definition that contains a call to itself is said to be recursive.

16.3. QUICKSORT WITH AN EXPLICIT STACK 203

device that is often used in cafeterias: it holds up a stack of plates by means of a
spring so that the top plate remains at the level of the counter and the temptation
never arises to remove any other plate than the top one.

What needs to be stored is not really a function call. All that matters is that
we remember the left and right bounds of the segment that still needs sorting. We
dedicate two arrays for this purpose: one (named lft) for the left bounds, and one
(named rht) for the right bounds. We also dedicate a variable, csr (think “cursor”)
to indicate what part of the array is in use for the stack.

This way of implementing the stack is illustrated by the stack when it is at its
highest in the above example:

csr
|

0 1 2 3 4 5 6 7
rht: ? ? ? ? 1 3 5 10
lft: ? ? ? ? 0 2 5 6

Because our starting point was how the leftmost call to qsort is replaced by two
calls, we got a stack that grows from right to left. Most people are used to stacks
that grow the other way around. That makes the example look like:

csr
|

0 1 2 3 4 5 6 7
rht: 10 5 3 1 ? ? ? ?
lft: 6 5 2 0 ? ? ? ?

With this way of implementing the stack, pushing p onto the stack of left bounds
is done by

lft[csr++] = p.

Popping the top item off the stack of left bounds and putting it into p is done by
p = lft[--csr].

From now on we consider the pair of stacks for the left and the right bounds
as a single stack for array segments. So we will just talk about pushing onto and
popping off “the” stack.

The reason for creating our own stack is the inefficiency of the recursive version.
Our first opportunity for improvement is to use the fact that of the two parts
resulting from partitioning only one needs to be stored for later treatment: we
continue right away with the other half.

This leads to the code for qSort1 in Program 16.4: Non-recursive Quicksort.
The key is contained in the comment

/* ...
to be sorted: a[p..q-1] and the segments on the stack

*/

204 CHAPTER 16. SORTING

Every time we go around the infinite loop, this is true. When it turns out that
a[p..q-1] contains fewer than two elements, then there is nothing to be sorted in
that segment. Accordingly, the top segment is moved from the stack to the variables
p and q. But if there is also nothing on the stack, then nothing more needs to be
sorted anywhere. The function can terminate.

1 int partition(int a[], int p, int q);
2 // partitions a[p..q]
3 void qSort1(int a[], int p, int q) {
4 // Purpose: sort a[p..q-1]
5 // Preconditions: p < q and a[p..q-1] allocated.
6 int max = 100, lft[max], rht[max], csr = 0;
7 /* lft[0..csr-1] is the stack of left bounds
8 rht[0..csr-1] is the stack of right bounds
9 to be sorted: a[p..q-1] and the segments on the stack

10 */
11 while (1) {
12 if (p >= q-1) {
13 // one element or fewer, so a[p..q-1] already sorted
14 if (csr == 0) // and nothing on stack, so ...
15 return;
16 // something on stack; pop it into p and q
17 csr--; p = lft[csr]; q = rht[csr];
18 } else { // p < q-1: at least two elements
19 // partition a[p..q-1]
20 int m = partition(a, p, q);
21 // push left half
22 lft[csr] = p; rht[csr] = m; csr++;
23 // continue with sorting the right half
24 p = m+1;
25 } } }

Figure 16.4: Non-recursive Quicksort, a quicksort with explicit stack.

However, this still suffers from the main weakness of the recursive version: it
is vulnerable to an unfavourable input that causes numbers of tiny segments to be
pushed onto the stack. See Exercise 16.4.4.

16.4 Exercises

16.4.1 Partition

Here are some array contents.

16.4. EXERCISES 205

a: 3 9 4 1 8 3 4 2 1

b: 3 1 4 1 8 3 4 2 9

c: 3 1 4 1 4 5 4 9 5

d: 1 3 4 1 4 5 4 9 5

Which could have been the result of partitioning? For those where your answer
is “yes” state which element(s) must (could) have been the pivot.

16.4.2 French national flag

Given is an array containing codes for the colours in the French national flag (from
left to right: blue, white, and red). The contents of this array cannot be assumed
to be in any particular order. Write a program that permutes the contents of this
array in the order as they occur in the French national flag‡. Full marks only if it
takes the program no more than a single pass through the array.

16.4.3 Faster selection sort

Program 16.1 for selection sort spends most of its time scanning the array for finding
a maximum element. A plausible way of speeding up the function is to find both
a minimum and a maximum in a single scan. This is done in Program 16.5. Write
the required function minmax.

16.4.4 Quicksort with stacks

Program 16.4 suffers from the same weakness as the recursive version: it is vul-
nerable to an unfavourable input that causes large numbers of tiny segments to be
pushed onto the stack. In the most extreme situation the height of the stack can
become equal to the number of elements in the array to be sorted.

This exercise is to remedy that: ensure that the height of the stack never exceeds
log2 n, where n is the length of the array to be sorted. So the modest size of 100
for the arrays storing the stack is good for lengths up to 2100 of the arrays to be
sorted.

16.4.5 Quicksort with structures

In Exercise 16.4.4 there are two weaknesses that can be remedied by means of
structures. The first is that there are separate stacks of integers for the left bounds
and for the right bounds of segments that remain to be sorted. We should take the

‡The problem is known as the problem of the Dutch national flag. However, in that flag the
coloured bands are arranged vertically. As this book visualizes arrays horizontally, the nationality
of the flag has been changed accordingly.

206 CHAPTER 16. SORTING

1 #include <stdio.h>
2 #include <stdlib.h> /* rand() srand() */
3
4 void swap(int a[], int i, int j);
5 void randPerm(int a[], int n);
6 void minmax(int a[], int p, int q);
7 // Performs exchanges in array a that result in
8 // a[p] being a minimum and a[q] a maximum element.
9 void sort(int a[], int n) {

10 int p = 0, q = n-1;
11 for(; p<q; p++,q--) minmax(a,p,q);
12 }
13 int main() {
14 int numErr = 0, i, n = 70000, a[n];
15 for(i = 0; i < n; i++) a[i] = i;
16 srand(4321); randPerm(a, n);
17 sort(a, n);
18 for(i = 0; i < n; i++) if (a[i] != i) numErr++;
19 printf("number of errors: %d\n", numErr);
20 }

Figure 16.5: A function for symmetric Selection Sort. Function minmax to be pro-
vided; see Exercise 16.4.3.

concept “segment” seriously and create structure for it that contains the left and
right bounds as components. This will allow us to create a single stack of segments.

The second weakness is that the concept “stack” is left implicit in an array that
contains the elements of the stack and an integer variable representing the stack’s
cursor. The concept of pushing or an element or popping the stack is left implicit
by incrementing or decrementing the cursor variable at the correct moment.

The implied concepts are made explicit in the program in Figure 16.6. Use it to
correct the weaknesses of the function qSort1 of Exercise 16.4.4.

16.4.6 Sorting an array of strings

Adapt quicksort to sort an array of strings.

16.4. EXERCISES 207

1 typedef struct {int lft; int rht;} segment;
2 segment mkSeg(int lft, int rht) {
3 segment temp;
4 temp.lft = lft; temp.rht = rht;
5 return temp;
6 }
7 typedef struct {segment* st; int max; int ptr;} stack;
8 /* st is array of segments of length max
9 ptr is stack pointer */

10 stack mkStack(segment* st, int max) {
11 stack temp;
12 temp.st = st; temp.max = max; temp.ptr = 0;
13 return temp;
14 }
15 void push(segment* seg, stack* st) {
16 *((st -> st) + ((st -> ptr)++)) = *seg;
17 }
18 segment pop(stack *st) {
19 return *((st -> st) + --((st -> ptr)));
20 }
21 int empty(stack *st) {
22 return (st -> ptr) == 0;
23 }

Figure 16.6: A stack of segments.

208 CHAPTER 16. SORTING

Chapter 17

The power of squaring and
halving

In Program 3.7, Extreme Compounding interest over a year, compounded by the
second, was computed with 31,535,999 multiplications, being one less than the
number of seconds in 365 days. I start by showing how to do this with fewer than a
hundred multiplications. The technique is an example of one that has applications
other than the computation of high powers.

17.1 Fast exponentiation

How can we speed up the computation of an where n is a large positive integer?
We have

a ∗ a ∗ · · · · · · ∗ a ∗ a︸ ︷︷ ︸
31,536,000 factors

The key observation is that this expression does not specify in which order the
multiplications are performed. Program 3.7 performs them from left to right, which
is far from optimal. The value of

a� · · · · · · � a︸ ︷︷ ︸
i times

� a� · · · · · · � a︸ ︷︷ ︸
j times︸ ︷︷ ︸

n=i+j times

(17.1)

depends only on n, where � can be any associative operation. In Program 3.7 i was
always made equal to 1.

Associativity gives us freedom to choose the order in which to activate the �
operation. Reverting to the special case where � is multiplication, we consider how
to decompose an. We can choose an = a ∗ an−1, which is what Program 3.7 does.
But we can also choose

an = 1 if n = 0

209

210 CHAPTER 17. THE POWER OF SQUARING AND HALVING

= (a ∗ a)n/2 if n is positive and even
= a ∗ (a ∗ a)(n−1)/2 if n is odd

Translated to C this becomes

double exp(double a, int n) {
if (n == 0) return 1.0;
return n%2 == 0 ? exp(a*a, n/2) : a*exp(a*a,(n-1)/2);

}

This function is recursive. Not that there’s anything wrong with recursion, but let’s
see if we can avoid it. Just out of curiosity.

One reason why recursion is elegant is that the value of the function remains
implicit, a luxury we do not have in iterative functions. As the first step towards an
iterative fast exponentiation function, let’s make the value of the function explicit
as the variable v.

v ∗ an = v ∗ a ∗ (a ∗ a)(n−1)/2 if n is odd
= v if n = 0
= v ∗ (a ∗ a)n/2 if n is positive and even

This suggests the three-parameter function exp1, which is auxiliary to exp with the
usual interface.

void exp1(double* v, double a, int n) {
if (n%2 == 1) { *v *= a; n--; }
if (n == 0) return;
a *= a; n /= 2;
exp1(v, a, n);

}

The function is pro forma recursive, but not substantially so. This is because there
is a single recursive call, which occurs just before the end of the function body, and
it has the same actual parameters as the formal parameters. Under these conditions
it can be replaced by a jump to the beginning of the body. This transformation is
called tail-call optimization.

double exp1(double* v, double a, int n) {
L: if (n%2 == 1) { *v *= a; n--; }
if (n == 0) return;
a *= a; n /= 2;
goto L;

}

Now is the time to remember that goto is almost everywhere forbidden, so we
banish the offending four-letter word by writing:

17.2. EGYPTIAN MULTIPLICATION 211

double exp1(double* v, double a, int n) {
while (1) {
if (n%2 == 1) { *v *= a; n--; }
if (n == 0) return;
a *= a; n /= 2;

}
}
double exp(double a, int n) {
double v = 1.0;
exp1(&v, a, n);
return v;

}

Substituting the body of exp1 for the call in exp gives an iterative fast exponenti-
ation function; see Program 17.1: Fast Exponentiation.

double exp(double a, int n) {
double v = 1.0;
while (1) {
if (n%2 == 1) { v *= a; n--; }
if (n == 0) return v;
a *= a; n /= 2;

}
}

Figure 17.1: Fast Exponentiation, a function that efficiently computes an by re-
peated squaring of a accompanied by halving n.

This function performs at most about 2 log n multiplications to compute an. It
does this by combining the squaring of a with the halving of n whenever that is
possible. Hence “the power of squaring and halving”. We will now see that this
translates to “the power of doubling and halving” for the multiplication of n and a.

17.2 Egyptian multiplication

The computer pioneers of the twentieth century felt smug about how computers led
people to make exciting discoveries like fast exponentiation. Four thousand years
ago the scribes of Egypt had found a similar algorithm. They avoided multiplication
tables by observing that multiplication can be done by repeated addition and that
this need not be onerous if one knows about the power of doubling and halving.

Little is known about the mathematics of the ancient Egyptians. They wrote on
papyrus; it is a marvel that anything written on this medium has survived since the
time the Rhind papyrus was written, which is somewhere between 1788 and 1580

212 CHAPTER 17. THE POWER OF SQUARING AND HALVING

B.C. The document has been deciphered sufficiently to have retrieved the example
of multiplying 23 and 27, for which the following table is shown.∗

\ 1 27
\ 2 54
\ 4 108

8 216
\ 16 432

Total 23 621

The first two columns represent the binary expansion of 23: the second column
contains the necessary powers of 2, while the first column contains \ for binary
one and space for binary zero. The third column contains the necessary doublings
starting at 27. The first column indicates which items in the third column should
be added up to obtain 23 times 27.

Our awe for the Egyptians should not inhibit us from tweaking the Rhind a bit.
I suspect the scribes had a little side computation to obtain the binary expansion
of 23. This is not necessary when the multiplication is done in the following format.

23 27
27 11 54
54 5 108
108 2 216

1 432
432 0

Total 621

Every next line in the third column is double that of the previous line. Every next
line in the second column is one half of the value in the previous line. If there is a
remainder in the division by two, then the third column is copied to the first. The
algorithm halts when zero is reached in the second column. The result is obtained
by adding the first column.

The Egyptian multiplication method can be obtained by making the following
changes in Program 17.1:

• change * to +,

• change 1.0 to 0.0, and

• change exp to something more appropriate.

giving the following result:

∗“The Rhind Papyrus”, by James R. Newman; in: The World of Mathematics, James R.
Newman, ed., Simon and Schuster, 1956.

17.3. “EGYPTIAN” QUOTIENT AND REMAINDER 213

double mul(double a, int n) {
double v = 0.0;
while (1) {
if (n%2 == 1) { v += a; n--; }
if (n == 0) return v;
a += a; n /= 2;

}
}

In the early days of digital computers multiplication was done by a similar algorithm
in software. Since then it has migrated downward, with the hardware performing
basically the same algorithm. In the same early days, this strategy was even more
important for the computation of quotient and remainder, as it is more complex.

17.3 “Egyptian” quotient and remainder

Just as multiplication can be defined as repeated addition, division can be defined
as repeated subtraction. Just as the number of additions for multiplication can be
reduced by a combination of doubling and adding, division can be speeded up by a
combination of doubling and subtracting†.

We consider the problem of dividing non-negative integer a by positive integer
b. Let us call the quotient and remainder resulting from this operation m and u,
respectively. We also consider the quotient and remainder resulting from dividing
a by 2b, and call these n and v, respectively.

We have

a = mb+ u

a = n(2b) + v

hence

u = v if v < b

= v − b if v ≥ b
m = 2n if v < b

= 2n+ 1 if v ≥ b

These equalities suggest Program 17.2: Fast Division.

†We follow the method of Elements of Programming by Alexander Stepanov and Paul McJones.
Addison-Wesley, 2009. The program we present is a dumbed-down version of the one of Stepanov
and McJones. Their programs are valuable not only for their algorithms, but also for the math-
ematical analysis that identifies the most general types for which the algorithms are valid. The
programs in the book are written generically; the program here translates the generic type to
integer.

214 CHAPTER 17. THE POWER OF SQUARING AND HALVING

1 #include<stdio.h>
2 typedef unsigned nat; // natural number
3 typedef struct{nat q; nat r;} pair;
4
5 pair mkQRP(nat q, nat r) { // "mkQRP": make pair
6 // Purpose: return the struct with q and r as components.
7 // Preconditions: None.
8 pair qr; qr.q = q; qr.r = r;
9 return qr;

10 }
11 pair quotRem(nat a, nat b) {
12 // Purpose: return the struct with quotient and remainder as
13 // components resulting from division of a by b.
14 // Preconditions: a >= 0 and b > 0.
15 if (a < b) { return mkQRP(0, a); }
16 if (a-b < b) { return mkQRP(1, a-b); }
17 pair qr = quotRem(a, b+b); // qr.q = n and qr.r = v
18 if (qr.r < b) return mkQRP(qr.q + qr.q, qr.r);
19 else return mkQRP(qr.q + qr.q+1, qr.r-b);
20 }
21 int main() {
22 int a = 123456789, b = 123;
23 pair qr = quotRem(a, b);
24 printf("%d %d\n", qr.q, qr.r);
25 printf("%d %d\n", a/b, a%b);
26 }

Figure 17.2: Fast Division, a function that efficiently performs integer division by
repeated subtraction.

17.4 Fractional powers

Just as we can raise a number to the millionth power by fewer than a hundred
multiplications by iterating squaring, so we can compute the millionth root, i.e.
b1/q for q equal to a million, by iterating the square root operation. We combine
this idea with Fast Exponentiation and write an algorithm for bp/q for arbitrarily
large, or small, natural numbers p and q, provided of course that q 6= 0.

The following equalities are useful.

vup/q = vuu(p−q)/q if 0 < q < p

= v(
√
u)2p/q if 0 < p < q

= vu if p = q

= v if u =
√
u

17.4. FRACTIONAL POWERS 215

The translation to code is in Program 17.3: Fractional Powers.

1 #include<stdio.h>
2 #include<math.h>
3
4 double fractPow(double u, int p, int q) {
5 // Purpose: return u^(p/q)
6 // Preconditions: p >= 0 and q > 0.
7 double v = 1.0;
8 while(p >= 2*q) { p /= 2; u *= u; }
9 while (p != q) {

10 if (p > q) { p -= q; v *= u; }
11 else if (p < q) {
12 double u1 = u; p *= 2; u = sqrt(u);
13 if (u1 == u) return v;
14 }
15 }
16 return v*u;
17 }
18 int main() {
19 double u = M_PI, p = 31416, q = 10000;
20 printf("%lf\n", fractPow(u, p, q));
21 printf("%lf\n", exp((p/q) * log(u)));
22 }

Figure 17.3: Fractional Powers, a function that iterates squaring and square-root
extraction to compute fractional powers.

216 CHAPTER 17. THE POWER OF SQUARING AND HALVING

Part IV

Method

217

Chapter 18

Top-down programming

I begin with an example of top-down programming, then explain the concept in
general terms, and continue with additional examples.

18.1 Square root by guess-and-improve

Here is a function, named iterRt, for computing the square root of a non-negative
floating-point number:

typedef double flt;

flt ab(flt x) { return x>0 ? x : -x; }
flt iterRt(flt a) {
flt gOld, gNew = 1.0;
do {gOld = gNew; gNew = (gNew + a/gNew)/2.0;}
while (ab(gNew-gOld) > 1.e-6);
return gNew;

}

The idea behind it is that an initial guess g at the square root of a can be improved
and that by improving the guess often enough one can get an as good approximation
to the square root as one wants.

How can we find out whether g is any good? Of course the closer g2 is to a the
better g approximates

√
a. For the sake of simplicity we start with the same initial

guess for any a. Mostly the initial guesses are way off. For example if we use 1 as
guess for everything, then our initial guess for

√
1001 will not be close to the true

value.
It is therefore important to have not only a way of checking a guess, but also a

way for improving one. Comparing g2 with a is not the only way of checking: we
can also see g is equal to a/g, as they should be when g is equal to

√
a. This latter

method of checking has the advantage of suggesting a way of improving the guess.

219

220 CHAPTER 18. TOP-DOWN PROGRAMMING

If g guesses low, then a/g will be high, and vice versa. Therefore, (g + a/g)/2, the
average of the two, is a better guess than either.

With this idea one can figure out why iterRt in the above code comes up with
the square root. But isn’t there a systematic way of converting the idea to code?
To answer this question, let us break down into steps what the idea is. The steps
are typeset bold in the enumeration below.

To obtain the square root of a

1. decide on a guess g of what the answer is

2. given g and a, improve g as much as possible

(a) if g is close enough to its previous version then return g; otherwise
make a one-step improvement of g and improve the result of that as
much as possible

(b) g is close enough to its previous version if their difference is less than
10−6

i. the difference between x and y is the absolute value of x− y
A. the absolute value of x is x if x ≥ 0; otherwise it is −x

(c) a one-step improvement of g is (g + a/g)/2

Each of the underlined steps is so simple that one can immediately write down a
function that performs this step. In Program 18.1 we find improve as improve,
close enough as close, one-step improvement as imp1, difference as diff,
and absolute value as ab.

This completes an example of what I call top-down programming. In the next
section I explain this in general terms.

18.2 Use of functions for top-down programming

Functions are the main building blocks of programs. Every well-defined task, how-
ever small, can have a function devoted to it. To keep code manageable, it helps
to keep functions small. Even the most complex task can be programmed with
small functions because their code can contain function calls. It is not uncommon
for function f0 to call f1, which calls f2, and so on until f10 finally actually does
something instead of passing the buck yet another time.

The functions of a program form a hierarchy. At the bottom are functions
that do not call any function. At the top is the function that performs the entire
application (the challenge to the designer of the program is to keep even this function
small). Because functions higher in the hierarchy rely on functions that are lower,
a plausible approach is to avoid calls to functions that have not been implemented.
In this way you are sure you are building on solid ground. This is the bottom-up
approach.

The fatal flaw of bottom-up is that initially one doesn’t know what the functions
at the bottom of the hierarchy are. In the beginning we only know the specification.

18.2. USE OF FUNCTIONS FOR TOP-DOWN PROGRAMMING 221

1 #include <stdio.h>
2 #include <math.h>
3
4 typedef double flt;
5
6 flt ab(flt x) { return x>0 ? x : -x; }
7 flt diff(flt x, flt y) { return ab(x-y); }
8 int close(flt x, flt y) { return diff(x, y) < 1.e-6; }
9 flt imp1(flt g, flt a) { return (g + a/g)/2; }

10 flt improve(flt g, flt a) {
11 flt gNew = imp1(g, a);
12 return close(gNew, g) ? gNew
13 : improve(gNew, a);
14 }
15 flt rt(flt a) { return improve(1.0, a); }
16 int main() {
17 printf("%lf %lf\n", rt(0.5), sqrt(0.5));
18 }

Figure 18.1: Square Root, a numerical recipe broken down in small steps, with each
step in its own function.

It gives a good idea of what the top level function should be; it doesn’t give any hints
about the functions at the bottom. Indeed, in the beginning the entire hierarchy
still needs to be discovered: we have no choice but to work top-down.

In top-down programming we have a problem to be solved by a function f . We
note that the solution would be easy if only we had a function g for this and a func-
tion h for that. We don’t. We go ahead and code f anyway. This way of proceeding
is an example of wishful thinking, and the fact the top-down programming can be
made to work is proof that wishful thinking can be made to produce results.

In a program hierarchy we have a chain in which function f0 depends of f1,
which in turns depends on f2, and so on. Whether this chain has to end depends on
whether we think of a chain of function calls or a chain of function definitions. The
chain of calls has to end, otherwise the program would not terminate. The chain of
definitions does not need to end because of conditionals (statements or expressions).
In a definition the recursive call needs to be part of a conditional with a branch
containing no call to itself. In this way the possibility exists that at one stage of
the computation a call to the function gives rise to a call to itself and that it does
not at a later stage.

Often f1, the function called by f0, is the same as f0. That is the function calls
itself. Such a definition is said to be recursive; the corresponding execution is said
to be an example of recursion. If f0 calls f1 and f1 calls f0, then we have a case of
mutual recursion.

222 CHAPTER 18. TOP-DOWN PROGRAMMING

18.3 Greatest common divisor

How did Program 8.7 come about? Someone told us a recipe and illustrated it with
an example (Table 8.3). Then, knowing the effect of if, else, and while, we tried
to reproduce the desired behaviour. It looks like the attempt was successful. How
can we be sure? How could we have discovered the recipe by ourselves? The key is
some mathematics.

Consider the following theorem.

Theorem 18.1 If x and y are positive integers, and if x > y, then gcd(x, y) =
gcd(x− y, y).

This is more than a theorem. We can read it as

one can replace the problem of finding gcd(x, y) by the problem of finding
gcd(x− y, y).

This makes sense, because the new problem is likely to be easier, if only because
the greatest of the two numbers of which we have to find the GCD is smaller.

Wishful thinking can take us directly from Theorem 18.1 to a function in C. See
Program 18.2: Recursive Euclid.

0 int gcd(int x, int y) {
1 // Purpose: return the greatest common denominator of x and y.
2 // Precondition: x and y are positive integers.
4 return (x == y) ? x : ((x<y) ? gcd(x, y-x) : gcd(x-y, y));
5 }

Figure 18.2: Recursive Euclid: compute the greatest common denominator by wish-
ful thinking.

18.4 Printing numerals

In section 14.1 we were given a number N and a base b and solved the problem of
printing the digits of the base-b representation of N .

Requirement Given a nonnegative integer N and an integer b greater than 1.
Print the digits of the base-b representation of N .

Analysis If, for example, we want the digits of the binary representation of 12345,
then we obtain the last digit as the remainder of the division of 12345 by 2 (base
b = 2) and we solve the problem of obtaining the remaining digits by obtaining

18.4. PRINTING NUMERALS 223

all digits of the integer part of 12345/2. Phrased in this way, we see that we have
reduced the original problem for 12345 to the same problem for 12345/2. This is
progress, because the reduced problem applies to a smaller number. By repeating
the reduction, we ultimately reduce to the trivial problem of obtaining the digits of
the binary representation of 0.

Implementation Let’s give the function to solve this problem as header

void num(int N, int b)

The formal parameter N is the number of which we want to display the digits. One
is typically only interested in binary, octal, decimal, or hexadecimal digits. This
choice is determined by b. But we can set b to any value that makes sense. The
function does not return a value, as we have decided to obtain the result by printing
its digits. As the problem reduction in this case is so simple, we can directly write
it out in code:

void num(int N, int b) {
if (N == 0) /* do nothing */ return;
printf("%d", N%b); num(N/b, b);

}

In our earlier example, we implemented the requirement by code that is arguably
simpler:

while (N != 0) {printf("%d", N%b); N = N/b;}

What have we gained by using a function?
If we are content with the fact that this solution prints the digits in reverse

order, then the answer is that we have gained nothing. But suppose that we are
more ambitious and that we want the digits in the right order. Then we find that
the problem reduction approach with the use of functions is more flexible.

Let us recapitulate the problem reduction we have just used, but this time
emphasizing the order in which the digits are produced:

To print the digits of N in reverse order, print the last digit, as the
remainder of N upon division by b, and then print in reverse order the
remaining digits as the digits of bN/bc∗.

Because the digits are printed in reverse order, the last digit is printed first. We
now see that it is just as easy to specify as follows:

To print the digits of N in normal order, print in normal order all digits
except the last by printing all digits of bN/bc and then printing the last
digit as the remainder of N upon division by b.

Both problem reductions can be directly transcribed to code. The latter gives:
∗The meaning of bxc (the floor of x) is the greatest integer not greater than x. Similarly, dxe

(the ceiling of x) means the least integer not less than x.

224 CHAPTER 18. TOP-DOWN PROGRAMMING

void num(int N, int b) {
if (N == 0) /* do nothing */ return;
num(N/b, b); printf("%d", N%b); // for normal order

}

See Program 18.3, with output

987654321
123456789

1 #include <stdio.h>
2
3 void numRev(int N, int b) {
4 if (N == 0) /* do nothing */ return;
5 printf("%d", N%b); numRev(N/b, b);
6 }
7 void num(int N, int b) {
8 if (N == 0) /* do nothing */ return;
9 num(N/b, b); printf("%d", N%b);

10 }
11 int main() {
12 numRev(123456789,10); printf("\n");
13 num(123456789,10); printf("\n");
14 }

Figure 18.3: Printing the digits of a number.

Chapter 19

Verification-driven
programming

In this chapter “search” means determining whether a given value occurs in an
array. If the array is ordered, then the answer can be found quickly, even when the
array is very large, by an algorithm called binary search. If the array is not known
to be ordered, then the appropriate algorithm is linear search. Binary search has
proved to be a surprisingly tricky problem. This is the reason why we use binary
search to demonstrate a method of programming that not only produces code but
also a proof that the code achieves its intended purpose.

The pioneer programmers learned to be careful about the code they submitted
to be run on the computer. Most learned it the hard way by finding that the print-
out contained no information other than that there was an unspecified error in line
13 of their thousand-line program. They were lucky if they could have another try
the same day.

Modern programming is different. After a modification aimed at correcting what
you thought was “the” error you can run the new version instantly. This lessens
the incentive to make sure that the correction is correct. It is not uncommon for a
novice programmer to be caught in a seemingly endless loop of: Oops! . . . ah, of
course . . . Oops!, and so on.

In this chapter I introduce what may be called “verification-driven program-
ming”. It is based on the technique of proving correctness by means of assertions.
We can think of assertions as relations between values of variables, relations that
have to hold whenever execution passes the point in the code where the assertion
is placed. When an assertion is simple enough, it is a condition according to the
definition of C. In that case the assertion can be checked as part of the compu-
tation by writing a statement of the form assert(condition). Verification-driven
programming does not rely on executability of assertions, but on the possibility of
expressing assertions in English in comments in the code.

One needs to make sure that there are enough assertions to “cover” the code
and to make sure that the assertion about the final state conforms to the specifi-

225

226 CHAPTER 19. VERIFICATION-DRIVEN PROGRAMMING

cation of the program. The method of assertions only ensures partial correctness,
which means that the final assertion holds if execution terminates. That execution
terminates also has to be proved somehow; a common error is that it doesn’t (“the
program goes into an infinite loop”).

Verification-driven programming is more than the method of verification by
assertions. Experience shows that when you write code first, it is too hard to
find a set of assertions that prove that it does what you want it do. It is obvious
that one should start with assertions, because the specification of the program is in
that form rather than in the form of code.

But one can’t really start with the assertions, as these refer to code. So there
can’t be assertions without code and it’s too hard to find the assertions when
the code is in place—a chicken-and-egg situation. Verification-driven programming
solves the deadlock by alternating the writing of assertions and code: a bit of the
one, then a bit of the other, and so on. This not only makes correctness proof by
verification feasible, but helps to discover an algorithm that solves the problem.

19.1 Binary Search

Background In Section 1.3.1 we attempted an informal description of an algo-
rithm for binary search. The first attempt was clearly inadequate. The second
attempt, although quite involved, still left some loose ends. We abandoned the
project, hoping for success with a better approach.

Part of the difficulty was that the task is more difficult than might appear at
first sight. Bentley∗ describes his experience as a teacher:

. . . we are to determine whether the sorted array X[1..N] contains the
element T. Precisely, we know that N ≥ 0 and that X[1] ≤ X[2] ≤
. . . ≤ X[N]; when N = 0 the array is empty. The types of T and the
elements of X are the same; the pseudo code should work equally well
for integers, reals or strings. The answer is stored in the integer P (for
position): when P is zero T is not in X[1..N], otherwise 1 ≤ P ≤ N
and T = X[P].

. . .

I’ve assigned this problem in courses at Bell Labs and IBM. Professional
programmers had a couple of hours to convert the above description
into a program in the language of their choice; a high-level pseudo code
was fine. At the end of the specified time, almost all the programmers
reported that they had correct code for the task. We would then take
thirty minutes to examine their code, which the programmers did with
test cases. In several classes and with over a hundred programmers, the
results varied little: ninety percent of the programmers found bugs in
their programs (and I wasn’t convinced of the correctness of the code in
which no bugs were found).

∗“Programming Pearls” by Jon Bentley, Addison-Wesley, 1986.

19.1. BINARY SEARCH 227

I was amazed: given ample time, only about ten percent of professional
programmers were able to get this small program right. But they aren’t
the only ones to find this task difficult: in the history in Section 6.2.1 of
his Sorting and Searching, Knuth points out that while the first binary
search was published in 1946, the first binary search without bugs did
not appear until 1962.

The problem is basically the one discussed in Section 1.3.1. As we suggested
there, we should be more ambitious and solve a more useful problem than the one
posed by Bentley: in case the element searched for does not occur, the program
should tell us where it should be inserted in case we wanted to do so. Don’t take it
for granted that the more ambitious version is harder to write.

Another part of the difficulty is that it is difficult to be precise in English; in
C one can’t help being precise. You now understand enough of C to read, if not
appreciate, the solution in Program 13.2. To appreciate this code we need to be
sure it is correct and how one might arrive at a correct solution to the problem.

In view of Bentley’s experience quoted above it may seem a bold claim that
this mysterious bit of code is free of errors. In the remainder of this section we
systematically develop a verified version of Program 13.2 without assuming any
knowledge of an algorithm.

Before using the logic of verification, we start with the mathematics of the
problem.

Definition 19.1 Let a−1, a0, . . . , an−1 be a non-decreasing sequence of integers,
except for a−1, which equals −∞. The insertion point ix of x with respect to a is
the greatest i such that ai ≤ x.

Theorem 19.1 Let the sequence a be as in Definition 19.1. Let n > 2 and let m
be the result of integer division if n− 1 by 2. It is the case that ix < m if x < a[m]
and that ix ≥ m otherwise.

This is not only a theorem. It can also be used as a rule for reducing the problem
of finding the insertion of x with respect to a−1, a0, . . . , an−1 to a smaller problem,
where the sequence is reduced to either the left or the right half of a. And this
reduction can be huge: binary search comes into its own when n is in the millions.
Binary search is also what makes dictionaries and telephone directories feasible in
book form.

We already know what the beginning of the function looks like:

00 int findOrd(int a[], int n, int x) {
01 // Purpose: return the insertion point IP for x w.r.t. a[0..n]
02 // Preconditions: n >= 0 and a[0..n-1] allocated.

The typical case for an insertion point ix is to have aix
≤ x < aix+1. There

are two untypical cases: one is that x < a0; in this case we use the imaginary
a−1 = −∞. The other is that x ≥ an−1; in this case the insertion point is n − 1.
These observations write the next few lines.

228 CHAPTER 19. VERIFICATION-DRIVEN PROGRAMMING

03 if (x < a[0]) return -1; // 0 <= IP <= n-1
04 if (x >= a[n-1]) return n-1; // 0 <= IP < n-1

Now we have the insertion point bounded on both sides by indexes of the array.
The remainder of the algorithm brings these bounds closer to each other until the
lower bound lb and the upper bound ub are next to each other.

05 int lb = 0, ub = n-1, m;

One can label every assertion. I have done this for the one in line 06; labels for the
other ones have been omitted, as they would remain unused.

06 U: // lb <= IP < ub
07 if (lb+1 == ub) return lb;
08 // lb+1 < ub

Lines 07 -- 08: if the bounds are next to each other, we are done, as the insertion
point is lb. If the bounds are not next to each other, there is an index m between
them that divides the gap between the bounds as well as possible into two equal
halves.

09 m = lb + (ub-lb)/2;
10 // lb < m < ub and lb <= IP < ub

In line 09 the temptation exists to write simply m = (lb+ub)/2. This works most
of the time, but fails when the sum gives overflow. This can happen even when
neither bound gives overflow.

11 if (x < a[m]) ub = m; else lb = m;
12 // lb <= IP < ub
13 goto U;
14 }

In line 11 the comparison x < a[m] is used to determine in which of a[lb..ub]
the insertion point lies. Line 12 is a stronger version of line 06. Line 12 has been
weakened back to become the same as line 06. Hence line 13 transfers control to
line 06.

Termination is proved by observing that ub− lb decreases every time around the
loop while maintaining ub > lb.

Presentation of the algorithm We have derived an algorithm for binary search
in such a way that it has also been proved correct. I claim the “derived” is justified,
not because I can write a program that automates the process, but in the sense that
at every step along the way it is clear what needs to be done. What more could
one want?

There is more to be done. Almost everywhere where programming is done, the
goto statement is forbidden. So a further step is needed, which is to rewrite the al-
gorithm derived by systematic development to an equivalent and socially acceptable
form. This is what you find in Program 13.2: Binary Search.

19.2. LINEAR SEARCH 229

19.2 Linear search

It is required to determine whether int x occurs in int a[n]. This is too vague
for a specification. There are several ways to make it sufficiently precise to proceed.

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
...
}

As one can see, perhaps not the most obvious way of making the general idea more
precise. One can say that it shows the scars of struggles with work done to simplify
the results of other approaches.

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
// n0 = n
}

n0 is not a variable but a recording of the initial value of the formal parameter n to
facilitate later assertions.

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
// n0 = n
U: // x does not occur in a[n..n0-1]
...
}

The first time execution passes the assertion labeled U there are no elements in
a[n..n0-1], so we can safely infer that x is not among them.

The advantage of U as an assertion is that it allows us to state what the algorithm
should do: to make n as small as possible while keeping the assertion true. Whether
n can be make smaller depends on whether a[n-1] == x. If this is true, then n is
the value to be returned.

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
// n0 = n

230 CHAPTER 19. VERIFICATION-DRIVEN PROGRAMMING

U: // x does not occur in a[n..n0-1]
if (a[--n] == x) return n;

...
}

Otherwise, we can decrement n and yet maintain the truth of U. If n is 0, then we
have in n the least i of the requirement.

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
// n0 = n
U: // x does not occur in a[n..n0-1]

if (a[--n] == x) return n;
if (n == 0) return 0;

...
}

We now have truth of U. This is expressed by transferring control to a code location
where U is asserted, which completes the function and its correctness proof.

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
// n0 = n
U: // x does not occur in a[n..n0-1] and n > 0

if (a[--n] == x) return n;
// x does not occur in a[n..n0-1]
if (n == 0) return -1;
// x does not occur in a[n..n0-1] and n > 0
goto U;

}

which we rewrite to

int find(int a[], int n, int x) {
// Purpose: return -1 if x does not occur in a[0..n-1] otherwise
// returns least i such that x does not occur in a[i..n-1].
// Preconditions: n >= 0 and a[0..n-1] allocated.
// n0 = n

while (1) { // x does not occur in a[n..n0-1] and n > 0
if (a[--n] == x) return n;
// x does not occur in a[n..n0-1]
if (n == 0) return -1;
// x does not occur in a[n..n0-1] and n > 0

} }

19.2. LINEAR SEARCH 231

Compare this to Program 13.1: Find, where the algorithm was known before writing
any code. That there is a difference should not be surprising: in this chapter we
did not take an algorithm as starting point, but a specification.

232 CHAPTER 19. VERIFICATION-DRIVEN PROGRAMMING

Chapter 20

Stepwise refinement

In Chapter 18 we looked at examples of top-down programming where the higher-
level task could be expressed in terms of a procedure call, even though the procedure
had not yet been written. The idea of top-down is more widely applicable: even
when the task to be tackled cannot yet be neatly wrapped up in a single procedure,
why not use a phrase of English as the basis for further progress? This idea has
been given the name stepwise refinement by Niklaus Wirth∗.

Stepwise refinement is essential for a beginning programmer because it shows
how to develop an algorithm from the beginning, starting with a blank screen. To
illustrate the technique we use it for a program that solves Sudoku puzzles.

Learning to program puzzles can be fun, and is not entirely frivolous. The puz-
zles treated here are valuable as prototypes of the scheduling problems that are
important in, for example, industry, transportation, medical services, and universi-
ties.

In this chapter I take the opportunity to introduce another problem-solving
technique, which is to exploit a familiar pattern. Problems come in families of
which the common trait is that their development by stepwise refinement starts in
the same way. This common trait is what I call “pattern”. Sudoku is the most
widely known member of a family sharing a certain pattern. The other members of
the family that I present in this chapter are Eight Queens and Knight’s Tour.

20.1 A pattern

What is a systematic way to write a program that solves Sudoku puzzles? Such a
method should capitalize on the fact that Sudoku shares important features with
other puzzles so one starts with a pattern that concentrates on these features and
abstracts away the differences among the different kind of puzzles. In this chapter
I demonstrate such a pattern suggested by the similarities between Sudoku and the
two other puzzles.
∗“Program development by stepwise refinement” by Niklaus Wirth. Communications of the

ACM, vol. 14, no. 4 (April 1971), pp. 221–227.

233

234 CHAPTER 20. STEPWISE REFINEMENT

In each puzzle there is a configuration of items that can be changed subject to
the rules of the puzzle.

• In Sudoku the configuration is a nine-by-nine grid of cells, each of which is
either empty or filled with one of the digits 1 through 9. The grid is subdivided
into three rows and three columns of three-by-three blocks. The digits are
placed so that they conform to certain exclusion rules: the same digit occurs
at most once in each row, column, and block. Initially most of the cells are
empty. We make a move towards solving the puzzle by placing a digit in an
empty cell so that that digit in that cell satisfies the exclusion rules. If you
are smart at picking the next cell to be filled according to the exclusion rules,
you only have to keep doing this to end up with a solved puzzle.

• In the eight-queens puzzle one is required to find a way of placing eight queens
on an otherwise empty chessboard in such a way that no queen attacks any
other queen.

• Given an empty chess board, the problem of the Knight’s Tour is to find a
sequence of knight’s moves starting from the lower left corner in such a way
that every square of the board is visited once and not more than once. The
problem is defined for n-by-n boards from n = 3 upwards.

Eight Queens and Knight’s Tour have in common with Sudoku that the puzzle
is solved by a sequence of moves, each of which have to obey certain rules. In
stepwise refinement we start with an abstract view of puzzles that fits all three of
our examples. In this way we can transfer concepts, if not code, from one program
to another.

We call a configuration a state. A change of state that respects the rules is a
move. We call a state S′ resulting from a move from state S a successor of S. To
solve the puzzle is to find a sequence of moves that transforms the start state to a
specified state, the goal state. For example, in Sudoku the goal state is characterized
by the absence of empty cells. A sequence of moves that transforms the start state
to the goal state is a solution.

A sequence of moves from the start state is called a partial solution, even though
it may not be extendable to a solution. If the puzzle can be solved at all, then the
partial solution that is the empty sequence of moves can be extended to a solution.
We view a computation that leads to a solution as a sequence of extensions of partial
solutions.

This abstraction suggests the following form of code for solving a puzzle.

void puzzle() {
// Purpose: print all solutions.
/* create start state S */
/* make S the empty partial solution */
/* extend S */

}

20.2. THE EIGHT-QUEENS PROBLEM 235

The idea behind this pseudo-code is put some of the compilable code in place
while the parts of the code yet to be written are described by comments. The
entire code is a self-contained unit so that it can take the form of the parameterless
function puzzle(). The prohibition in C against nested functions prevents us from
encapsulating the parts of the body as functions.

void extend(S) {
// Purpose: print all solutions reachable from S.
// goal test
/* if S is a solution, then print S and return */

// move generator
/* for each successor S’ of S, extend S’ */

}

The challenge of puzzles arises from the fact that a move may lead to a state
from which a solution is not reachable. In such a case it is necessary to backtrack;
that is, to undo the effect of the last one or more moves and to select a different
move, one that may lead to the solution.

In spite of its simplicity, the above algorithm provides this behaviour. After
completion of the call extend(S’) the local variables that ensure that all successors
of S are generated have the values they had at the time this function was called.

The system of states and moves may be such that a sequence of moves may exist
that leads from a state back to that state. The algorithm has no safeguard against
moving around such a cycle ad infinitum.

As the Eight-Queens Problem is the simplest of the three, I treat it first.

20.2 The eight-queens problem

However states are defined, the solution state has all eight queens on the board.
One could define all states as having this property. The initial state could then
be a randomly selected distribution of the eight queens, or some arbitrarily defined
state like the one where all queens are on the first row. Such a representation of
the puzzle’s states has the disadvantage that cycles of states are possible so that
the algorithm rarely works.

One could also define states without the requirement that all eight queens are
on the board. In that case we can define a move as adding a queen to a board
that contains fewer than eight queens. The corresponding definition of the initial
state is the one where there are no queens on the board. This representation has
the property that, if a solution exists, then it can be reached by eight choices of a
square for the additional queen. Such a definition has the advantage that no cycles
are possible. Let us adopt this definition.

To minimize the amount of work the algorithm has to do, we minimize the
number of states that need to be considered. Without loss of generality we can
eliminate all states that have more than one queen in the same row. We can further
restrict consideration to states that have k queens in the first k rows. In this way it

236 CHAPTER 20. STEPWISE REFINEMENT

is still possible to reach all solutions from the initial state. Furthermore we restrict
consideration to states with k queens in such a way that no two queens attack each
other. With k = 0 this is not a restriction, so that the algorithm remains applicable.
Successor of a k-queen state is defined as the result of adding the (k+1)-st queen in
such a way that the new queen does not attack any of the k queens already placed.

These choices allow us to represent a state by an integer k in 0..8 and an array
q[0..7] such that q[i] == j iff the queen in the i-th row is in column j. The state
determines the columns for the first k queens; that is, the contents of q[0..k-1].
For the initial state we have k == 0, with no queen on the board.

void eightQueens() {
// Purpose: print all solutions.
// create start state
const int N = 8; int q[N], k;
// make S the empty partial solution
k=0;

// extend S
extend(q, N, k);

}

void extend(int q[], int N, int k) {
// Purpose: to print all solutions reachable
// from state specified in parameters.
// Preconditions: 0 <= k < N and q[0..N-1] allocated.
// goal test
if (k == N) {print(q, N); return;}

// move generator
for(int j=0; j<N; j++)
if (!attack(q, k, j)) {
q[k] = j; // successor of current state
extend(q, N, k+1);

}
}

The recursive definition of extend is essential in making this work. Suppose the
for statement is halfway and has assigned 4 to j. The call extend(q, N, k+1)
creates its own copy of j and typically makes yet another call with its own copy.
Whether or not these calls result in a solution being printed, eventually j is restored
with its value of 4, so that the for statement under consideration continues with
the consequences of assigning 5 to j.

It remains to define under what conditions a queen in row k and column j
attacks any of the queens in q[0..k-1].

int absVal(int x); // returns absolute value of x
int attack(int queens[], int k, int j){
// Purpose: return 1 or 0 according to whether a queen

20.3. SUDOKU 237

// in [k,j] attack any of those in rows [0..k-1].
// Preconditions: queens[0..k] allocated.
for(int i=0; i<k; i++) {
// Does a queen in [k,j] attack the queen row i and column j?
if (queens[i] == j) /* same column */ return 1;
if (absVal(queens[i]-j) == k-i)
/* same diagonal */ return 1;

}
return 0;

}

Now that only print and absVal remain to be defined, we can consider the eight-
queens problem to be solved.

int main() { eightQueens(); }

prints all 92 solutions.

20.3 Sudoku

We consider the original Sudoku puzzle, where a 9-by-9 grid of cells has to be
filled with digits 1, . . . , 9 in such a way that the exclusion rules are satisfied: each
digit occurs once in each row, once in each column, and once in each of the non-
overlapping 3-by-3 blocks into which the the grid can be decomposed. In the initial
state part of the solution is given; the other cells are empty. Each move consists of
placing a digit in an empty cell in such a way that the exclusion rules are satisfied.

We represent the state by an array of digits in which an empty cell is indicated
by its containing the digit 0.

In the eight-queens problem our representation was such that there was a unique
initial state. Sudoku is different in that there are as many initial states as there are
Sudoku puzzles.

For every initial state there are zero or more ways of filling all empty cells while
conforming to the exclusion rules. A Sudoku puzzle has an initial state that can be
completed in exactly one way.

1 void sudoku() {
2 // Purpose: to print all solutions to the Sudoku puzzle
3 // specified in the start state.
4 // create start state
5 const int n = 3; // blocksize
6 int s[] = {
7 0,0,0, 7,0,0, 2,1,0,
8 0,0,0, 0,5,9, 0,4,3,
9 0,0,0, 0,0,8, 9,0,0,

10
11 8,0,2, 0,0,0, 0,0,0,

238 CHAPTER 20. STEPWISE REFINEMENT

12 6,5,0, 0,1,0, 0,2,4,
13 0,0,0, 0,0,0, 5,0,7,
14
15 0,0,7, 2,0,0, 0,0,0,
16 9,1,0, 5,8,0, 0,0,0,
17 0,8,4, 0,0,6, 0,0,0
18 };
19 int k;
20 // make (s, n, k) partial solution
21 k = 0;
22 { // extend partial solution
23 extend(s,n,k);
24 } }

“Solving” the puzzle is a special case of extending a partial solution to a full
solution.

1 void extend(int s[], int n, int k) {
2 // Purpose: print all solutions that reachable from current state.
3 // Precondition s[0..n*n*n*n-1] allocated and 0 <= k <= n*n*n*n.
4 int n2 = n*n, n4 = n2*n2;
5 // the n2 by n2 Sudoku grid is stored in s[0..n4-1]
6 // goal test
7 if (k == n4) { print(s, n); return; }
8 // k < n4
9 // move generator

10 // s[k] is cell in row k/n2 and column k%n2
11 if (s[k] != 0) // cell occupied; content checked OK already
12 extend(s, n, k+1);
13 else { // cell empty
14 for(int x = n2; x>0; x--) {
15 if (ok(s, n, x, k)) { // x ok in cell s[k]?
16 s[k] = x;
17 extend(s, n, k+1);
18 s[k] = 0; // restore to empty
19 } } } }

Function ok determines whether a proposed value x is compatible with the existing
cell contents.

1 int ok(int s[], int n, int x, int k) {
2 // Purpose: return 0 or 1 according to
3 // whether x in s[k] satisfies exclusion rules.
4 // Preconditions: s[0..n*n*n*n-1] is allocated,
5 // 1 <= x <= 9, and 0 <= k < n*n*n*n.
6 int n2 = n*n, n4 = n2*n2;
7 // the n2 by n2 Sudoku grid is stored in s[0..n4-1]

20.4. KNIGHT’S TOUR 239

8 int i = k/n2, j = k%n2;
9 // s[k] is cell in row i and column j

10 for(int p = 0; p < n2; ++p)
11 if ((x == s[i*n2+p]) || (x == s[p*n2+j]))
12 return 0; // conflict in row or column
13 for(int p = n*(i/n); p < n*(i/n) + n; ++p)
14 for(int q = n*(j/n); q < n*(j/n) + n; ++q)
15 // [p][q] is in same block as [i][j]
16 if (x == s[p*n2 + q]) // conflict in block
17 return 0;
18 return 1; // no conflict in row, column, or block
19 }

To print all solutions:

int main() { sudoku(); }

On my laptop there is no noticeable delay between starting this program and the
printing of the solution for any of the Sudoku’s that I have tried. These include ones
labeled as “hard” or “diabolical”. Yet you can see from the code that the solution
is obtained by brute force. This seemed necessary to avoid making the code more
complex. A human Sudoku solver takes the opposite approach. She spends a lot of
time finding a cell for which only one value is possible. In this way backtracking is
avoided, or at least minimized.

20.4 Knight’s Tour

A chessboard is an array of squares with eight rows and eight columns. Let’s number
columns by x = 0, . . . , 7 and rows by y = 0, . . . , 7. A knight is a piece that can
move from a square (x, y) to (x ± 1, y ± 2) or to (x ± 2, y ± 1) in so far as these
squares are on the board.

Of course we should not take for granted that the simplistic brute-force search
will also work for the Knight’s Tour. Fortunately, the problem scales down as well
as up: it makes sense for any size of board from three-by-three upwards. Below we
consider four rows and columns.

00 01 02 03 16 03 12 16
04 05 06 07 11 06 09 02
08 09 10 11 08 01 04 13
12 13 14 15 05 10 07 00

The two-digit numerals in the array on the left are an enumeration of the squares of
the four-by-four board. Rows are numbered from the top down; columns from left
to right. The enumeration has the property that the n-th square in the enumeration
is in row n/4 and in column n%4. This is chosen for ease of printing.

The two-digit numerals in the array on the right represent a sequence of moves
of a knight using the enumeration on the left to identify the squares visited. The

240 CHAPTER 20. STEPWISE REFINEMENT

sequence of squares visited is denoted 00, 01, 02, 03, and so on. As shown, the first
square visited is in the lower right, the square with coordinates x = 3 and y = 3,
which is the square enumerated as 15 in the array on the left. Note that the knight
has no square to go to from step 13. Thus the sequence of moves shown in the right
array cannot be extended to a solution. The two unvisited squares are marked 16,
one more than the highest possible move number on a four-by-four board.

We represent the path of the thirteen-step partial solution by the array p[0..15]
in such a way that step k is in p[k] according to the above enumeration.

index 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
p 15 09 07 01 10 12 05 14 08 06 13 04 02 11 16 16

The chosen representation of squares and of partial solutions suggests the fol-
lowing definition.

1 void knightsTour(int n) {
2 // Purpose: print solutions of the Knight’s tour puzzle
3 // specified in this function.
4 // Preconditions: None.
5 // create start state
6 const int n2 = n*n;
7 int p[n2]; for(int i=0; i<n2; i++) p[i] = n2;
8 // make S the empty partial solution
9 // p[0] = n2-1; // knight starts in lower right corner

10 p[0] = 0; // knight starts in upper left corner
11 int k = 1;
12 // extend S
13 extend(p,n,k);
14 }

The function extend takes as parameters an array p[0..n*n-1] and an integer k
such that p[0..k-1] contains a partial solution. The goal of the function is to
extend this partial solution, if possible, to a complete solution, and to print it.
The length of a complete solution is n*n. This fact provides a convenient test for
completeness of a partial solution. This is used in the following definition of extend.

1 void extend(int p[], int n, int k) {
2 // Purpose: to print all solutions reachable from
3 // partial solution contained in p[0..k-1].
4 // Preconditions: p[0..n*n-1] allocated and k <= n*n.
5 // goal test
6 if (k == n*n) { print(p,n); return; }
7 // move generator
8 // k < n*n
9 int sq = p[k-1];

10 // find successor of sq
11 for (int mvNum = 0; mvNum < 8;) {

20.4. KNIGHT’S TOUR 241

12 int succ; // for successor to sq
13 succ = sq;
14 next(&succ, &mvNum, n);
15 if (find(p, k, succ) == -1) {
16 p[k] = succ;
17 extend(p, n, k+1);
18 p[k] = n*n; // Reset to original value.
19 } } }

The function next handles the intricacies of the knight’s move, including making
sure that it does not jump off the board.

1 int next(int* sq, int* i, int n) {
2 // Purpose: if there is a successor
3 // of *sq with move number *i or greater, but less than 8,
4 // write that successor in *sq and its move number in *i.
5 // Preconditions: *sq is the current square and all moves from
6 // that square with move number less than *i have been tried.
7 // n is the number of rows and columns of the board.
8 static int dxdy[8][2] = // 8 candidates for knight’s moves
9 { {-2,-1}, {-2,+1}, {-1,-2}, {-1,+2},

10 {+1,-2}, {+1,+2}, {+2,-1}, {+2,+1}
11 };
12 int x = *sq/n, y = *sq%n;
13 while (*i < 8) {
14 if (0 <= x+dxdy[*i][0] && x+dxdy[*i][0] < n &&
15 0 <= y+dxdy[*i][1] && y+dxdy[*i][1] < n
16) // valid successor found
17 { *sq = (x+dxdy[*i][0])*n + y+dxdy[*i][1];
18 (*i)++; return 1;
19 } else (*i)++;
20 } // *i == 8
21 return 0;
22 }

The function find is defined as follows.

1 int find(int a[], int n, int x) {
2 // Purpose: return i such that a[i] == x, if it exists;
3 // return -1 otherwise.
4 for (int i = 0; i < n; i++) if (a[i] == x) return i;
5 return -1;
6 }

Finally, the indispensible function print.

1 void print(int p[], int n) {
2 // Purpose: print contents of p[] as n-by-n board.

242 CHAPTER 20. STEPWISE REFINEMENT

3 // Precondition: n > 0 is number of rows and columns.
4 // p[0..(n*n)-1] is allocated.
5 // Limit number of solutions to be printed:
6 static int COUNT = 10; assert(COUNT-- > 0);
7 int n2 = n*n;
8 for(int i=0; i < n2; i++) {
9 if (i%n == 0) printf("\n");

10 printf("%02d ", find(p, n2, i));
11 }
12 printf("\n");
13 }

This program shows that no solution exists for n = 4. It quickly finds the first
solutions for n equal to 5, 6, and 7. With n = 8 it depends on where you start.
From the lower right corner I have not found it worthwhile to run it long enough to
get any solution. From the upper left corner it takes a minute or so before it starts
printing solutions.

Scheduling From an abstract point of view puzzles are similar to the kind of
schedules that need to be made when running a hospital, an airline, or the exam-
inations in a university. In practice schedules are produced by a combination of
sophisticated techniques from operations research and massive amounts of comput-
ing. Yet in practice human input can be essential, as illustrated by the career of
Henry and Holly Stephenson who have produced schedules for Major League Base-
ball in preference to competitors using state-of-the-art pure computer methods. The
Stephensons used homebrew software of which the output was further optimized by
hand†.

†The Stephensons got the contract every year from 1980 to 2004. For the beginning of this
period, see “Popes, Blizzards And Walleyed Pike” by Albert Kim. Sports Illustrated, April 8,
1991.

Appendices

243

Appendix A

Table of operators

Even in a complex expression, its structure can be recovered from associativity and
precedence only, without any help from parentheses. For example, how much is

u/w*-u+v/u+v-x- -x/v (A.1)

when the integer variables u, v, w, and x have values 1, −2, 3, and −4 respectively?
Of the operators in this expression, unary minus has the highest precedence.

The given expression therefore has the same value as

u/w*(-u)+v/u+v-x- (-x)/v

We replace the parenthesized sub-expressions by their values

u/w*(-1)+v/u+v-x- 4/v

As there are now operators with two levels of precedence, this expression has the
same value as

(u/w*(-1))+(v/u)+v-x- (4/v)

We use left-associativity within the parenthesized sub-expression

((u/w)*(-1))+(v/u)+v-x- (4/v)

Further applications of associativity or precedence yield, successively,

(0*(-1))+(-2)+v-x-(-2)
0+(-2)+v-x-(-2)
(-2)+v-x-(-2)
(-4)-x-(-2)
0-(-2)
2

245

246 APPENDIX A. TABLE OF OPERATORS

The specific algorithm for recovering the structure from associativity and precedence
depends on the compilation method used by the implementation. Such an algorithm
will evaluate any legal sequence of operands and operators that you throw at it.

Should the programmer know such an algorithm? I think not. I think a pro-
grammer should never write an expression like (A.1) where one needs an algorithm
to know what it means. The meaning of any expression, however complex, can be
made obvious by using enough parentheses. Don’t forget that parentheses are really
cheap for the compiler to process.

247

Tokens Operator Class Prec. Associates
a[k] subscripting postfix 16 left-to-right
f(. . .) function call postfix 16 left-to-right
. direct selection postfix 16 left-to-right
-> indirect selection postfix 16 left-to-right
++ -- increment decrement postfix 16 left-to-right
(type name){init} compound literal postfix 16 left-to-right
++ -- increment decrement prefix 15 right-to-left
sizeof size unary 15 right-to-left
~ bitwise not unary 15 right-to-left
! logical not unary 15 right-to-left
- + arithmetic negation, plus unary 15 right-to-left
& address of unary 15 right-to-left
* indirection unary 15 right-to-left
(type name) cast unary 14 right-to-left
* / % multiplicative binary 13 left-to-right
+ - additive binary 12 left-to-right
<< >> left and right shift binary 11 left-to-right
< > <= >= relational binary 10 left-to-right
== != equality inequality binary 9 left-to-right
& bitwise and binary 8 left-to-right
^ bitwise xor binary 7 left-to-right
| bitwise or binary 6 left-to-right
&& logical and binary 5 left-to-right
|| logical or binary 4 left-to-right
? : conditional ternary 3 right-to-left
= += -= *= assignment binary 2 right-to-left
/= %= <<= >>= assignment binary 2 right-to-left
&= ^= %= <<= >>= assignment binary 2 right-to-left
, sequential evaluation binary 1 left-to-right

Table A.1:
The operators of C and their properties. The column heading “Prec.” stands for
the precedence of the operator. From C: a Reference Manual by S.P. Harbison and
G.L. Steele, 5th edition, Prentice-Hall, 2002.

248 APPENDIX A. TABLE OF OPERATORS

Appendix B

Command-line parameters

So far we have relied on input to programs to be supplied by functions that are
called from within bodies of functions. This is not the only possibility.

To execute a program, it has to be activated by the operating system. The result
of compilation and linking is that the operating system recognizes a new command,
which is the program. The program is then started by typing the name of this
command on the command line. A good opportunity to transmit a small amount
of information to the program is to type it after the name of the command, in the
same way it is done with other commands to the operating system.

Suppose we want to use the computer to compute the sum of a short sequence
of numbers. So far we would have started the program and then the code would
prompt the user to type the numbers. It is also possible to write the program so
that the numbers come right after the program command. An interaction with the
program would look like this:

%add .123 .234 .345 .456 .567 .678
2.403000

where % is the operating systems prompt. We say that in such a situation the input
has been provided by command-line parameters.

How do we get code to read command-line parameters? So far we have always
defined the function main to have no parameters. When the program is intended
to take command-line parameters, function main is given two parameters. The
first has type int; the second has as type array of pointers to characters. The
first parameter is given as value one more than the number of intended command-
line parameters. (That number can be zero.) The second parameter is given as
value an array containing the command line parameters, if any. Conventionally, the
parameters for main are given the names argc, for “parameter count”, and argv,
for “parameter vector”.

The elements of the array argv are strings. More precisely, each element is a
pointer to the first character of the string. argv[1] points to the first character
of the first command-line parameter (if there is one), argv[argc-1] points to the

249

250 APPENDIX B. COMMAND-LINE PARAMETERS

first character of the last parameter, (remember that argc is one more than the
number of parameters). argv[argc], the last element of argv, is the null pointer.
This leaves argv[0] unaccounted for: it points to the first character of the string
that names the command by which the operating system invokes the program.

1 #include <stdio.h>
2 #include <stdlib.h> // for atof
3
4 int main(int argc, char *argv[]) {
5 double sum = 0;
6 for(int i=1; i < argc; ++i) sum += atof(argv[i]);
7 printf("%f\n", sum);
8 }

Figure B.1: Add Parameters, a program that adds numbers specified on the com-
mand line.

Program B.1: Add Parameters does the job.
Notice that the command-line parameters are made available as strings. To be

interpreted as decimal fractions, which is what we want here, we pass them to the
function atof (“a-to-f”, for “alphanumeric to float”) from the library stdlib, which
determines their equivalent floating-point value.

A command line consisting of a command followed by parameters is just one
example of the common practice of representing text as an array (in this case argv)
of strings. Any text can be represented as array of strings representing the words
or the lines in the text.

251

argv

char
'a'

0

char
'd'

1

char
'd'

2

char
'\0'

3

0

char
'.'

char
'1'

char
'2'

char
'3'

1

char
'\0'

2

3

4

5

6

...

...

...

char
'.'

char
'6'

char
'7'

char
'8'

char
'\0'

6

argc

int

Figure B.2: Data structure for command line add .123 .234 .345 .456 .567
.678.

252 APPENDIX B. COMMAND-LINE PARAMETERS

Appendix C

The C standard library

I may have given the impression that one always starts a program from scratch. This
is misleading. For example, every program at least needs some input or output.
Even Program 2.1 needed both. Input and output do not happen by magic: to
be able to connect the I/O statements in a program to the computer and to the
peripheral hardware is a sizeable and challenging programming task. Once this is
done, it should be possible to let many programs benefit by building on this effort.

Re-use of code I/O is an example of code that is needed by many programmers.
We include in the present survey facilities other than I/O that are often needed and
are included in the C standard library.

In general, library is understood as a collection of program components that
can be re-used. “Program components” suggests primarily functions. But other
things can also benefit from re-use. For example, it may require quite a bit of
research to discover that on your system the greatest finite double-length floating-
point number is 1.7976931348623157E+308. This, or whatever it is, is conveniently
available according to the C standard library under the standard name DBL_MAX.
Accordingly, we tend to speak of library “facilities”, rather than specifically restrict
ourselves to functions. Over time, the number of such facilities, major or minor,
connected or not, runs in the hundreds, representing a considerable quantity of code,
often hundreds of times longer than the program, which may only use printf.

Of course we don’t want to load and link to all of the standard library’s exe-
cutable when we only need a single library facility. This is the reason we include
only the library containing the required item.

Each library comes with a header file, which contains just enough so that,
by including it, we can separately compile our own program and then link with
the required pre-compiled libraries. Thus, DBL_MAX is in a library accessed by
#include <float.h>. For printf it is stdio.h.

253

254 APPENDIX C. THE C STANDARD LIBRARY

C.1 Overview of the C standard Library

Standard C comprises both a language standard and a set of libraries. Below is a list
of the headers. As you can surmise, the size and degree of focus varies among these
libraries. There are large and well-focused libraries, such as the ones concerned
with time, input and output, and localization. There are also facilities that are not
so easily classified, and one does not want to leave these floating around on their
own in hundreds of little bits. These unclassifiable ones are herded together in grab
bags such as stddef.h and stdlib.h.

Here are the fifteen libraries identified by their header files.

assert.h Enables the use of executable assertions.

ctype.h Tells whether a character is a digit, a letter, . . . Includes functions such
as isdigit, isalpha, isspace, . . .

errno.h Standardizes the reporting and handling of errors.

float.h Floating-point number systems may differ in the precision they provide,
how large the exponent can be, among other things. Such characteristics can be
found here.

limits.h C programs should be able to run on computers with different archi-
tectures. These can be described by such numbers as the minimum and maximum
values of char, int, short, long, and so on. This makes it necessary for C code to
find out what the relevant data are on the current machine.

locale.h Facilities that support internationalization are collected in this library.
The best introduction to the topic is given by the following remark∗

If one lives in the United States, it’s easy to forget that English is not
the only language, ASCII is not the only character set, $ is not the only
currency symbol, dates can be written with the day first, times can be
based on a 24-hour clock, and so on.

If one lives in Los Angeles or in Canada it is not easy to forget that there are
languages other than English. Locale-dependent conventions are characterized and
made accessible under this header.

math.h Lots of stuff here: trigonometric functions, logarithms, powers, and some
odds and ends.
∗“The Practice of Programming” by Brian W. Kernighan and Rob Pike. The quote is a good

excuse for bringing this delightful book to your attention, very much recommended as a companion
to the one you are reading now.

C.2. FORMATTED I/O 255

setjmp.h In C goto statements are restricted to act within a function. Sometimes
it is desired to jump far away. A set of functions to make this possible is collected
under this header.

signal.h A signal is an unforeseen event that occurs during execution of a pro-
gram. For example: division by zero, or the user pressing ctl-c. When code
needs to be written for the proper handling of such events, this header provides a
standardized set of functions.

stdarg.h In this book we have only defined functions with a fixed number of
parameters. However, we have used a function with a variable number of parameters
(printf). Such functions can be defined in C, but need the help of some functions
found in this header.

stddef.h A miscellaneous collection.

stdio.h I/O facilities.

stdlib.h Another miscellaneous collection. One often needs this library for ran-
dom permutation of an array (see Section C.5, the Fisher-Yates Shuffle) and for
random numbers generally.

string.h String handling: we often need to determine the length of a string,
compare or concatenate two strings, copy a string. That, and more, can be found
here.

time.h Suppose you want to start with now and then go back 2000 months, or
advance 2 billion seconds. Standard functions can be found here that make this
easy, as well as many less bizarre operations.

C.2 Formatted I/O

The function printf is unusual in that it allows a variable number of parameters.
The first parameter is a string. It is this string that is output, subject to such
modifications as will now be described. The string contains zero or more codes,
formatting codes, that are substituted by the same number of parameters following
the first paramter of printf. It is the string, with the substitutions in place, that
is printed. Each code determines the format in which the corresponding parameter
is printed.

The function scanf is the input counterpart to printf. Its first parameter is the
string containing the formatting codes. The part of the string that is not a code has
to be present in the input. No action is taken as a result of that part of the string.
Each code determines the format expected for the corresponding part of the input.
That part of the input is scanned according to the format specified. The resulting

256 APPENDIX C. THE C STANDARD LIBRARY

value becomes the value of the actual parameter. To be any use, that parameter
has to be a pointer, like any output parameter. scanf returns the number of items
that were input as a result of the call.

Program C.1: Formatted Input and Output, illustrates that scanf and printf
are to some extent each other’s mirror images. With input 09/08/07, the output

0 #include <stdio.h>
1
2 int main() {
3 int dd, mm, yy;
4 /* input date in format dd/mm/yy */
5 int count = scanf("%d/%d/%d", &dd, &mm, &yy);
6 printf("number of items input: %d\n", count);
7 printf("%02d-%02d-%02d\n", mm, dd, yy);
8 /* output date in format mm-dd-yy */
9 }

Figure C.1: Formatted Input and Output, an example of printf and scanf. Note
that the slashes specified in the pattern of the scanf call have to be present in the
input string.

08-09-07 results. There are three occurrences of the same code %02d in

printf("%02d-%02d-%02d\n", mm, dd, yy);

Each specifies that the corresponding integer value is to be printed in a field of
width 2 padded if necessary with zeros.

Program C.2: Long Print String, contains an example with a more elaborate
print string, where the conversion codes %d, %o, %x, and %f are used.

The output could be the following:

as an unsigned in decimal: 90
as a character: Z
as an unsigned in octal: 132
same in hex: 5a
negated, as an integer: -90
negated, as unsigned: 4294967206
as a flpt num in default format: 0.014925
as a flpt num in exponential format: 1.492537e-02
as a flpt num in wide field: | 0.01492537313432835792|
same, left justified: |0.01492537313432835792 |

As a first approximation, the output is the string that is the first parameter
of printf. As far as the C compiler is concerned, this first parameter is one long

C.3. INTERNAL I/O 257

00 #include <stdio.h>
01
02 int main() {
03 int x;
04 scanf("%d", &x);
05 printf("\
06 as an unsigned in decimal: %u\nas a character: %c\n\
07 as an unsigned in octal: %o\n\
08 same in hex: %x\n\
09 negated, as an integer: %d\n\
10 negated, as unsigned: %u\n", x, x, x, x,-x, -x);
11 double y = 1.0/67.0;
12 printf("\
13 as a flpt num in default format: %f\n\
14 as a flpt num in exponential format: %e\n\
15 as a flpt num in wide field: |%30.20f|\n\
16 same, left justified: |%-30.20f|\n", y, y, y, y);
17 }

Figure C.2: Long Print String, an example with an elaborate print string. Note the
possibility of a string being distributed over several lines by means of a backslash
followed immediately by a newline. This has to do with the preprocessor; see
Appendix D.

line. However, to allow more convenient layout, when entering the source text one
can interrupt a line by inserting the backslash character followed by pressing the
“enter” key.

The above examples contain but a small sample of the codes available for spec-
ifying formats for scanf and printf. They constitute a “little language”, as the
people at Bell Labs liked to call this system of codes. The best known of the several
other little languages they developed is the one for regular expressions.

The details are complicated: I need to consult reference material every other
time I use formatted I/O. See Section 4.6.2.

C.3 Internal I/O

The functions num and numRev in Program 18.3 output the digits of a given integer.
They combine the algorithm for determining the digits with a decision about how to
output them. The code for the algorithm is more widely usable if it is isolated from
concern with output. Strings are useful for effecting such a separation of concerns:
the algorithm can be written so that the digits are placed in a string. Another
function can then hide the decision about how to output the resulting string. We

258 APPENDIX C. THE C STANDARD LIBRARY

can think of strings as a vehicle for internal output: output to memory, which is
where the strings reside. Strings can be used similarly as internal alternative to
input from external sources.

Program C.3, Internal Output, is an example of code where strings are used for
internal output. The program outputs the digits of an integer. Unlike Program 18.3,
here the code for the conversion of the integer to digits is separated from the code
that outputs the digits. The function main creates a string of length 100. This

00 #include <stdio.h>
01
02 void reverse(char s[], int n);
03 // reverses s[0..n]
04 void int2str(int n, int b, char s[]) {
05 // write b-base digits of n in reverse order
06 int k = 0;
07 while (n>0) { s[k++] = ’0’ + n%b; n /= b; }
08 reverse(s, k-1);
09 s[k] = ’\0’;
10 }
11 int main() {
12 char s[100];
13 int2str(54321, 8, s);
14 printf("%s\n", s);
15 }

Figure C.3: Internal Output, printing the digits of a number via a string.

is a somewhat arbitrary number: big enough to hold any anticipated numeral,
yet not wastefully large. Remember that 32 bits is already large for a variable
of type int; this corresponds to a numeral of about ten decimal digits. The call
int2str(12345, 10, s) (“integer to string”) places the digits of the numeral for
the given integer to the base ten in the string s. The natural way to produce the
digits is in reverse order. Rather than to strain and try to get them to come out in
the right order, we let it happen and then reverse the resulting string.

There is a much easier way to write int2str if we don’t need the flexibility
of an arbitrary numeral base. Suppose we want decimal numerals. Consider the
statement

printf("%d ", n = 12345);

The compiler encounters the string "12345" in the source code and converts to the
internal integer representation, which is, in the case of 32-bit integers:

00000000000000000011000000111001

C.4. FILE I/O 259

When executing this statement, the internal representation is converted back to
the string "12345". So the library function printf already has the capability of
int2str for the decimal case. But in printf the algorithm for producing the digits
is tied up with output. Fortunately the same library has a function sprintf, which
is the internal-output version of printf. We can use it to implement int2str for
the decimal case:

void int2str(int n, char s[]) {
sprintf(s, "%d", n);

}

Similarly, scanf has an internal-input version called sscanf.

C.4 File I/O

So far all our input has been taken from “Standard Input”; all our output went to
“Standard Output”. What are these mysterious entities? Concretely, they are files,
which are, from the point of view of C, sequences of characters. In C programs,
these files are referred to as stdin and stdout, respectively.

Strictly speaking, we have been doing “file I/O” ever since our first program.
We didn’t notice because printf and scanf imply by default that the files to
be written to or read from are stdout or stdin, respectively. The more general
versions are fprintf and fscanf, also made available from the standard library
by the line #include <stdio>. fprintf and fscanf are called the same way as
printf and scanf, except that there is an additional first parameter specifying the
file. Thus printf(...) is equivalent to fprintf(stdout, ...), while scanf(...)
is equivalent to fscanf(stdin, ...).

In addition to these files, there is also stderr, to which we can write error
messages.

There are many situations where a C program needs to be able to read input
from, or to write output to, files other than stdin, stdout, and stderr. This is
what is usually understood as “file I/O”. The general process for input is to create
a file pointer and to cause it to point to the file that contains the intended input.
This happens as a result of “opening” the file for reading. The function that makes
this happen is fopen, which is provided by the library stdio. This function takes
as parameters two strings: the first is the name of the file as known to the operating
system; the second is "r", which stands for “read”. The result returned by fopen
is a file pointer. The program accesses this file via that pointer. stdin, stdout,
and stderr are file pointers. They are standard in the sense that they are available
without having to be created by a call to fopen.

For output the file specified by the program need not exist. If it does not, then
the operating system creates, if possible, a file with the specified name. If the file
does exist, then opening the file for output implies a choice. This choice is whether
to replace the existing file content with the output written by the program, or
whether to append this output to the existing file contents. These two options are
realised by calling fopen with "w" or "a" as second parameter, respectively.

260 APPENDIX C. THE C STANDARD LIBRARY

For “file pointer” to make sense, there has to be a suitable type for the pointer
variable to point to. This type is FILE, and it is defined by the stdio library.
File pointers are often called “file handles”. As these handles are usually a scarce
resource, it is wise to free them for other use as soon as possible. This is done by
the library function fclose.

Program C.4: File Concatenation, shows file I/O in action. Supposing this pro-
gram is compiled and loaded to become the command cat, then, e.g., the command
line

cat temp0 temp1 temp2 < temp3
will cause temp0 to contain the result of concatenating temp1, temp2, and temp3.
This command line may need additional explanation. For the cat command, the
command-line arguments are temp0, temp1, and temp2, up to the < symbol. After
placing the remaining command-line arguments into temp0, Program C.4 contin-
ues by adding standard input to temp0. In this example, it is temp3 that acts as
standard input.

1 #include<stdio.h>
2
3 void fcopy(FILE* in, FILE* out) {
4 int ch;
5 while ((ch = getc(in)) != EOF) putc(ch, out);
6 }
7 int main(int argc, char* argv[]) {
8 FILE *in, *out;
9 out = fopen(argv[1], "w");

10 if (out == NULL) {
11 fprintf(stderr, "%s: can’t open %s\n", argv[0], argv[1]);
12 return 1; // abnormal return from function main
13 }
14 for (int i=2; i<argc; ++i) {
15 in = fopen(argv[i], "r");
16 if (in == NULL) {
17 fprintf(stderr, "%s: can’t open %s\n", argv[0], argv[i]);
18 return 1; // abnormal return from function main
19 }
20 fcopy(in, out); fclose(in);
21 }
22 fcopy(stdin, out); fclose(out);
23 }

Figure C.4: File Concatenation, A program that creates a file specified in the first
command-line parameter and places in it the result of concatenating the files, if
any, following the first parameter, followed by the standard input.

C.5. THE FISHER-YATES SHUFFLE 261

Lots of things can go wrong when a C program tries to open a file for reading or
appending. In the example, the putative filename retrieved from the command line
may not exist, or at least not in the directory where the runtime system looks for
a file of that name. When the C program tries to open a file for writing, then the
named file may not exist. In that case, the runtime system will ask the operating
system to create a file with the specified name. This may not be possible for any
of several reasons.

In cases like this, the function fopen returns the null pointer. If the program
would try to follow a null pointer, then the operating system has to kill its execution
in self-defense. To prevent this, Program C.4 prints a diagnostic message and ter-
minates itself. The message is written to the standard file stderr (using fprintf),
rather than to stdout (using printf). This is done in case standard output is redi-
rected somewhere else than the screen. In such a situation the message would not
be noticed and might mess up something that does not expect such output. The
advantage of stderr is that even when standard output is redirected, text written
to this file still appears on the screen.

C.5 The Fisher-Yates shuffle

To test an array program it can be useful to be able to randomly permute the
contents of an array of length n. This means that the contents of the array should
become any of its n! permutations with equal probability. Fisher and Yates de-
scribed† a pencil-and-paper method to do this. Function randPerm in Program C.5
is adapted from the one published‡ by D. Knuth.

Here’s how to randomly permute an array. With a random number generator
select i from the range 0..n-1. Exchange a[n-1] and a[i]. Next, randomly select
i from the range 0..n-2. Exchange a[n-2] and a[i]. And so on, until we end by
selecting i from the range 0..1 and exchanging a[1] and a[i]. Note that at every
step there is a chance that nothing changes because an element is exchanged with
itself. This is as it should be. See Program C.5.

†Example 12, Statistical Tables, by R. A. Fisher and F. Yates, London, 1938
‡Algorithm 3.4.2P in The Art of Computer Programming, vol.2, by Donald E. Knuth, Addison-

Wesley, 1969.

262 APPENDIX C. THE C STANDARD LIBRARY

1 #include<stdio.h>
2 #include<stdlib.h>
3
4 void swap(int a[], int i, int j);
5 // swaps a[i] and a[j]
6 void randPerm(int a[], int n) {
7 // Purpose: randomly permute a[0..n-1]
8 // Preconditions: n >= 0 and a[0..n-1] allocated
9 // a0[0..n-1] == a[0..n-1]

10 int j, i = n-1;
11 while (i>0) {
12 j = (rand()/(double)RAND_MAX)*(i+1);
13 // 0 <= j <= i with equal probability
14 swap(a, i, j);
15 // a[i..n-1] is random selection a0[0..n-1]
16 --i;
17 }
18 }

Figure C.5: Random permutation, a function that replaces the contents of an array
by any of its permutations with equal probability by means of the Fisher-Yates
shuffle.

Appendix D

The preprocessor

All our programs are written in a language loosely indicated as “C”. A first crack
in this fiction appeared when we started to scrutinize directives. We found that the
line

#include <stdio.h>

is an instruction to replace that line by a header file. Such an instruction, called a
“directive”, is not part of the C language.

If C is the language that the compiler understands, then the directives (which
have disappeared by the time the source code gets to the compiler) belong to another
language, the preprocessor language. This language is confined to lines that start
with # (possibly preceded by whitespace).

So far the only non-C lines we encountered were those that started with #include.
In addition to file inclusion, the preprocessor has other uses. The more common
of these are the removal of comments and the processing of “macros”. Other uses
include splicing interrupted lines, merging juxtaposed strings, as well as replacing
trigraphs by their equivalents. These uses of the preprocessor will be briefly touched
upon in the remainder of this appendix.

D.1 Macros

A line that starts with #define is a macro definition. After #define comes a
name, typically followed by text. The preprocessor replaces the name by the text.
If, untypically, that text is missing, then any occurrence of that name is replaced
by nothing.

So far I have described macro definition without parameters. Even with param-
eters, a macro is no more than a simple-minded version of a function. Accordingly,
a macro definition is best introduced by a function definition that is simplistic in
that its body consists of a return statement only. For example the function

int absdiff(int a, int b) { return a>b ? a-b : b-a; }

263

264 APPENDIX D. THE PREPROCESSOR

is such a definition. An expression such as absdiff(i, j) is replaced by the ex-
pression in the return statement where the formal parameters get as values the
values of the actual parameters.

A macro definition is a simple version of such a simplistic function definition.
Like a function definition, a macro definition consists of a header followed by a
body. The macro header is like a function header except that types are omitted.
Because of its limited scope, the return keyword is superfluous and is omitted. In
the following macro definition I have tried to get as close as possible to its function
counterpart:

#define ABSDIFF(a, b) (a)>(b) ? (a)-(b) : (b)-(a)

Simplistic though macro definitions may be, there seems to be no end of sub-
tleties that can arise in their use. All I try to do in this section is to give some idea of
the possibilities provided by macros by the example program below. As the subject
is complex, it is best to turn to a professional reference∗ for more information.

00 #include <stdio.h>
01
02 #define PI 3.1415926535
03 #define MULT(x, y) x*y // maybe not what you want
04 #define ABSDIFF(a, b) (a)>(b) ? (a)-(b) : (b)-(a)
05
06 int absdiff(int a, int b) { return a>b ? a-b : b-a; }
07
08 int main() {
09 int i = 3, j = 4;
10
11 // output
12 printf("%g\n", PI); //3.14159
13 printf("%d\n", MULT(2+3, 4)); //14
14 printf("%d\n", absdiff(i, j)); //1
15 printf("%d\n", ABSDIFF(i, j)); //1
16 printf("%d\n", absdiff(i, absdiff(j, i))); //2
17 printf("%d\n", ABSDIFF(i, ABSDIFF(j, i))); //2
18 int p = i, q = j;
19 printf("%d\n", absdiff(++i, --j)); //1
20 printf("%d\n", ABSDIFF(++p, --q)); //3
21 }

Figure D.1: Macro Demo, a program showing some possibilities and pitfalls of
macros.

Consider Program D.1: Macro Demo.
∗I tend to use “C, a Reference Manual” by Samuel P. Harbison III and Guy L. Steele, Jr.

D.1. MACROS 265

line 12 As the macro PI has no parameter, its name is merely replaced by what
comes after the name. This is a very common use. As the early versions of C had
no const qualifier, this was the only way to avoid the plague of “magic numbers”.
C has now a better way, but many programmers seem reluctant to adopt it.

line 13 It could be that the intention of

#define mult(x, y) x*y

is to get whatever replaces x multiplied by whatever replaces y. In this call x*y, the
body of the macro, results in the expression 2+3*4, the evaluation of which does
not give the result of multiplying 2+3 by 4. This is why one would see, in a case
like this, the macro definition written as

#define mult(x, y) (x)*(y)

Always put parentheses around a macro’s formal parameters: you never know what
text is going to replace them.

lines 14 and 15 ABSDIFF is a typical example of a macro, where the motivation
is to replace a function call by more efficient code. During execution, the function
call absdiff(i,j) is processed by copying the values of i and j to the formal
parameters a and b and then executing the body.

The macro is more efficient during execution because the macro is processed
before compile time. The macro call ABSDIFF(i, j) is replaced by the expression

(i)>(j) ? (i)-(j) : (j)-(i)

which is the body of the macro. When execution reaches this expression, it is ready
for evaluation.

When execution reaches the function call absdiff(...), the actual parameters
have to be evaluated, the values have to be assigned to the formal parameters, and
control has to be transferred to the function definition. Only then can evaluation
start of the expression that is ready right away in the case of a macro call. The
macro version is therefore faster. To improve efficiency many facilities of the C
standard library, are implemented as macros, though their activations look like
function calls.

lines 16 and 17 Again the macro is successful in mimicking the function: the
macro call gives the right answer. It is worth reflecting on how the same answers
are arrived at, as it has happened in a different way.

To execute the outer call to the function absdiff, the expressions for the actual
parameters have to be evaluated. One of these involves itself a call to this function.
This inner call is completed first, and then the outer call can proceed.

The macro processor replaces in the macro body

(a)>(b) ? (a)-(b) : (b)-(a)

266 APPENDIX D. THE PREPROCESSOR

the name a by i and the name b by ABSDIFF(j, i) which results in

(i)>(ABSDIFF(j, i)) ? (i)-(ABSDIFF(j, i)) : (ABSDIFF(j, i))-(i)

This result contains itself macro calls. The macro processor continues replacing
macro calls by bodies until no macro calls are left. Accordingly, it makes in this
case another pass over the macro body with the result

(i)>((j)>(i) ? (j)-(i) : (i)-(j)
) ? (i)-((j)>(i) ? (j)-(i) : (i)-(j)

) : ((j)>(i) ? (j)-(i) : (i)-(j)
)-(i)

which gives 2 for i equal to 3 and j equal to 4.

lines 19 and 20 The preceding examples may have suggested that ABSDIFF is
successful in emulating the function definition. This is not the case. For example
in call 6 the increment and the decrement happen once, when evaluating the actual
parameters.

On the other hand, the macro call replaces

(a)>(b) ? (a)-(b) : (b)-(a)

by

(++p)>(--q) ? (++p)-(--q) : (--q)-(++p)

In the evaluation of this expression the increment and the decrement happen twice:
once during evaluation of the condition and once in evaluating the expression whose
value is to become the value of the entire conditional.

D.2 Phases of preprocessing

The various activities of the pre-processor are dependent on the order in which they
are executed. This order is the following.

1. Trigraph sequences are replaced by their equivalents. For example, the key-
board may have forced code to have been entered as
??=include <stdio.h>
The preprocessor changes this to
#include <stdio.h>

2. There are various ways in which we can prevent lines of code from becom-
ing too long. If all else fails, we can interrupt a line anywhere by a newline
provided it is preceded immediately by a backslash. In this stage, the pre-
processor removes every occurrence of a backslash followed by a newline (the
compiler doesn’t mind long lines). Such backslashes were used, for example,
in Program C.2.

D.2. PHASES OF PREPROCESSING 267

3. Comments are removed.

4. #include directives are obeyed. The resulting header files typically contain
many macros.

5. Macros are expanded.

6. Escape sequences such as occur in ’\t’ or in "Hello!\n" are replaced by their
equivalents. It may happen that strings are juxtaposed, as in "Hello, th""ere!".
Such occurrences are replaced by their concatenation. The result is that in
this case it would be as if "Hello, there!" had been written.

The result is now ready for the compiler.

268 APPENDIX D. THE PREPROCESSOR

Appendix E

Difficult declarations

So far just about the most complex declaration was char* argv[], which we had
no difficulty recognizing as a declaration of argv, saying that it is an array of
pointers to characters. But you may well find yourself puzzled when confronted
with something∗ like

int*(*(*(*x)())[2])()

You show it to the kind lady in the next cubicle who throws a glance at it and
says: “x is a pointer to a function returning a pointer to a two-element array of
pointers to functions returning a pointer to an integer”, which may not help at all.

“Why?”

“Oh—dunno. That’s what it looks like and that’s what it is.”

What you need is the Beginner’s Introduction to Difficult Declarations, which
follows.

In the first place, however complicated a mess of asterisks, parentheses, brackets,
primitive types, or typedef names you find, there is always a name in there that is
not a typedef name, and that name is what is being declared by the declaration.
In this case that name is x.

After you’ve found the name, you work outwards from there. The asterisk in
front of x says that x is a pointer to something. The parentheses to the right of
(*x) indicate that that something is a function. The asterisk to the left of (*x)()
indicates that that function returns a pointer. The rest of the declaration specifies
what type of thing that pointer points at.

Working outwards, we find as successive constituents of the declaration:

∗Example from S.P. Harbison III and Guy L. Steele, Jr: “C, a Reference Manual”, page 102.

269

270 APPENDIX E. DIFFICULT DECLARATIONS

x
*x

(*x)()
*(*x)()
(*(*x)())[2]

((*x)())[2]
(*(*(*x)())[2])()

int* (*(*(*x)())[2])()

We now add the meanings of these constituents, starting at the top, with the sim-
plest. Every time we add something simple to something we already know, so it’s
a safe and painless process.

x x is ...
*x a pointer to ...
(*x)() a function returning ...
*(*x)() a pointer to ...

(*(*x)())[2] a two-element array of ...
((*x)())[2] pointers to ...
(*(*(*x)())[2])() a function returning ...

int* (*(*(*x)())[2])() a pointer to an integer

Granted that int* (*(*(*x)())[2])() isn’t as horrible as it looks at first sight,
one should not write such complex declarations. Still, we should be able to handle
them because other programmers may not have read this book.

How to avoid excessive complexity in declarations? In the first place cast a
skeptical look on the design that seems to call for such a complicated data structure.
If it is truly justified, then introduce the complicated declaration in stages. For
example, you might use typedef to introduce an auxiliary type, say, fpi that
indicates a pointer to a function returning a pointer to an integer:

typedef int*(*fpi)();
and an auxiliary type, say, arp that indicates a pointer to an two-element array of
fpi:

typedef fpi (*arp)[2];
With these auxiliary types in place, the declaration of x becomes simply:

arp (*x)();
Let us now test this declaration to see whether our reasoning has been correct.

We get a really simple function that is of type *fpi:
int* fn0(int* ip) {return ip;}

It just returns a copy of its actual parameter. We also define an array arr that can
be pointed to by something of type arp:

fpi arr[] = {&fn0, &fn0};
Finally, a function fn1 that can be pointed to by x:

arp fn1(arp arrPtr) {return arrPtr;}
See Program E.1: Slaying the Monster, where it all comes together.

The fact that we have tamed the difficult declaration does not imply that using
the x obtained with the tamed declaration is easy to use.

271

00 #include<stdio.h>
01
02 typedef int*(*fpi)();
03 typedef fpi (*arp)[2];
04 arp (*x)();
05 int* fn0(int* ip) {return ip;} // &fn0 is of type fpi
06 arp fn1(arp arrPtr) {return arrPtr;}
07 // &fn1 and x have the same type
08 fpi arr[] = {&fn0, &fn0};
09 // &arr is of type arp
10 int i = 12345;
11
12 int main() {
13 x = &fn1;
14 printf("%d\n"
15 , *(((*(*x)(&arr))[0])(&i))
16);
17 }

Figure E.1: Slaying the Monster, introducing a complicated type in stages.

((((*x)(&arr))[0])(&i))
123 4 45 53 2 1

Here is the expression in line 15 in Program E.1 annotated with a single digit under
each parenthesis. The digits are chosen to show which parenthesis goes with which.
In the table below you see what each subexpression denotes.

4..4: function returing pointer to arp
5..5: arp
4..45..5: arp
3..3: array[2] of fpi
2..2: fpi
1..1: pointer to int

272 APPENDIX E. DIFFICULT DECLARATIONS

Appendix F

Glossary

problem reduction

address Number used to identify the location of a byte in memory.

actual parameter Item in the parenthesized list of expressions in a function call.
Has to match the corresponding formal parameter in the function’s definition.

constant Variable of which the value cannot be changed. It can only be given
a value by an initialized declaration. The declaration has to be qualified by the
keyword const.

control Mechanisms that determine the order in which statements are executed.

declaration Makes an identifier and its type known to the compiler. Usually
the declaration of a variable is the only one and also serves as the definition of the
variable. The declaration of a function may be its unique definition (can be referred
to as the defining declaration), but can also consist of only the function prototype
and then it is referred to as a referencing declaration. Any number of referencing
declarations may exist for the same function.

definition Declaration in which space for a variable is allocated. This may in-
clude initialization. Definition of a function also associates an identifier with an
allocated area of memory. This area is initialized to contain the code resulting from
compilation of the function’s source code, and cannot be changed.

defining declaration Declaration in which a function is defined, as opposed to
referencing declaration.

dependence Relation between definitions of functions A and B. A depends of B
when the definition of A contains a call to B.

273

274 APPENDIX F. GLOSSARY

dereference Operation on a pointer that yields the object pointed at. It is de-
noted by the prefix operator *.

initialize To ensure that a variable has the intended value before the first time
an expression containing the variable is evaluated. It is a common error to overlook
this need. To avoid this error it is advisable to initialize variables in combination
with their definition wherever possible.

formal parameter Any of the identifiers in a non-empty parameter list in the
declaration of a function.

identifier Sequence of letters, digits, or underscores that does not begin with a
digit.

literal Atomic expression that is not an identifier. It denotes the same value in all
possible C programs. Compare constants and variables, which are identifiers that
are associated with a value via a declaration and/or assignments.

name Attribute of a variable. It is an identifier that gives access to other at-
tributes of the variable, such as content and address. Functions are another kind
of object named by an identifier. Non-object entities that have names include enu-
meration constants, labels, components of structures and unions.

numeral Representation of a number. Distinct numerals can represent the same
number, for example CLXXIX and, in C notation, 179, 0263, and 0xb3 are equiv-
alent numerals.

parameter list List occurring between the name of the function and its body in
a function declaration.

pointer Variable that has an address as value.

problem reduction Step in the problem-solving procedure that replaces a prob-
lem to be solved by zero or more easier problems. The aim is solve difficult problems
in a number of easily executed problem-reduction steps. In the context of program-
ming problem reduction translates to defining a function by zero or more function
calls. Related to recursion, stepwise refinement, top-down programming, and wish-
ful thinking.

pseudo code Text in the format of a program where the elements are succinct
informal equivalents in English of their counterparts expressed in a programming
language.

275

recursion Use or definition of a function f that depends on itself or depends on a
function that depends on f . Can be regarded as an application of problem reduction
when the function depended on represents an easier problem to be solved.

reference Used as a verb this refers to the relation between a name and the object
named by it. In the context of C the use of the word as a noun is not helpful. For
example, a pointer is a pointer, not a reference. But see dereference. Also, the use
of a name before the introduction of that name by a declaration is called “forward
reference”. It is forbidden in C, but for functions its effect can be obtained by
writing a function prototype as a referencing declaration, in advance of the defining
declaration.

referencing declaration Declaration of a function that is not the defining dec-
laration. It takes the form of function heading followed by semicolon.

scope Part of the program in which a declaration is in force. It may happen that
inside the scope of a declaration of a variable a declaration occurs of a variable of
the same name. In the inner scope that name refers to the variable created by the
declaration in the inner scope.

stepwise refinement A form of problem reduction in which problem reduction
steps are stated in pseudo code.

straight-line code Code in which every statement is executed exactly once, and
executed in the order written in the source code.

visibility Inside the scope of a variable’s declaration it may happen that the
identifier of the declaration refers to another variable; see scope. It is said that the
outer declaration is then not visible.

wishful thinking Can be of interest to problem solving when it takes the form:
“This problem would be solvable if only I had solutions to this, this, and that other
problem.” In a programming context, it translates to problem-solving procedures
known as top-down programming and stepwise refinement.

276 APPENDIX F. GLOSSARY

Index

π
approximation of, 34, 35
digits of, 7

^, 93
%, 84, 85
&, 63
’\n’, 106
*, 85
-, 85
.., 198
/, 85
:, 84
<<, 94
>>, 94
?, 84
E, 53
FILE, 260
\\, 20
\n, 20
\t, 20
argc, 249
argv, 249
assert.h, 254
atof, 250
auto, 153
bool, 48
break, 104, 116
calloc, 154
const qualifier, 265
continue, 117
ctype.h, 254
double, 49, 54
e, 53
enum, 57
errno.h, 254
false, 48

fclose, 260
float, 49, 54
float.h, 254
fopen, 259
goto, 117, 228
int, 54
limits.h, 254
locale.h, 254
long double, 49, 54
long, 47, 54
main, 13, 27
malloc, 154
math.h, 254
printf, 59, 255
ptrdiff_t, 119
return, 116
scanf, 255
setjmp.h, 254
short, 47, 54
signal.h, 255
size_t, 59
sizeof, 58
static, 153
stdarg, 255
stddef.h, 255
stderr, 259
stdin, 259
stdio, 259
stdio.h, 255
stdlib.h, 255
stdout, 259
strcat, 125
strcmp, 125
strcopy, 122
string.h, 255
strncat, 125

277

278 INDEX

strncmp, 125
struct, 137
time.h, 255
true, 48
typedef, 57, 270
union, 142
unsigned long, 47, 54
unsigned short, 47, 54
unsigned, 54
+, 85
, }93

, 93
ASCII table, 55
&&, 93
&, 93
nan, 182

actual parameter, 14, 27, 273
adaptive Simpson, 186
add, 85
address, 61, 63, 119, 273
address of function, 77
address operator, 63
alchemist, 4
algebra

linear, 187
algorithm, 4

characteristics of, 6
Euclid’s, 111

algorithmic language, 7
allocated, 152
Alpha byte, 98
alphabetic, 5
analytical integration, 185
angle between vectors, 196
approximating π, 34, 35
architecture, 62, 65

Harvard, 65
von Neumann, 65

area, 35, 39
area of triangle, 20
array, 32, 154

multi-dimensional, 125
two-dimensional, 125

array-oriented, 120

ASCII, 47, 122
assertions, 225
assignment, 23
associative, 209
associativity, 245

left, 85
right, 85

atomic, 84
attack, 122
automatic type conversion, 53
automation, 1, 3
automaton, 105
auxiliary type, 270
average

weighted, 194

Babbage, Charles, 1
back substitution, 190
backslash (\), 19
backspace character, 129
backspacing, 129
backtrack, 235
base-2 numeral, 46
behaviour, 3
big-endian, 98, 146
binary numeral, 176
binary operator, 84
binary search, 5, 7, 167, 225
bisection search, 169
bit vector, 92
bit-wise operation, 93
block, 69, 99
body, 14, 27, 29, 70
boolean, 48
Boolean expression, 86
bottom-up, 220
brace, 13
break statement, 115, 117
Bresenham, 172
buffer, 122

C, 2, 8, 11
C++, 2, 8
C#, 2, 8
cafeteria, 203
calculator, 1

INDEX 279

pocket, 18
call-by-value, 73, 141
calloc, 154
cannon ball, 81
card, 4
ceiling, 168
ceiling function, 223
celebrities, 102
cell (memory), 3
cell phone, 18
char, 47
character

backspace, 129
count, 104
escape, 19

character packing, 95, 96
circle, 172
circuit, 2
clearing (a bit), 93
coefficient, 128, 188
coefficients, 194
Collatz, Lothar, 36
column-major order, 126
comma operator, 113
command-line parameters, 249
comment, 13
comparison operator, 24
compiler, 2
complexity

quadratic, 197
composite, 84
compound interest, 31
compound statement, 99
Compute, 3, 22, 23
concerns

separation of, 257
condition, 24, 29
conditional expression, 84, 90
Configure, 3, 21
constant, 18, 62, 273
content, 61
continue statement, 115, 117
continued fraction, 36
control, 23, 99, 273
control structure, 23

controlling variable, 29
convergents, 36
conversion, 29, 53
conversion codes, 256
copy

line, 116
Cordon Blue, 4
correction term, 185
count, 104
counterfeit coin, 101
cubic polynomial, 185
cursor, 199
cycle, 235

d-space, 65
dangling pointer, 79, 140
dart throwing, 183
data, 45
data type

size of, 58
decimal machine, 175
decimal numeral, 176
decimal point, 53
decision

two-way, 100
decision table, 100
decision tree, 100
declaration, 99, 273
declarations

difficult, 268
decrement operator, 88
default statement, 104
defining declaration, 273
definiteness, 6, 7
definition, 13, 22, 273
degenerate for-statement, 124
delay, 81
dependence, 273
dereference, 273
dereferencing operator, 63
derivative, 181
development cycle, 11
difference

finite, 38
differentiation, 181

280 INDEX

numerical, 181
difficult declarations, 268
digital, 1
dime, 176
dinner plate, 202
directive, 13, 263
distance, 39
distribution, 131
divide, 85
division, 84
do while, 107
dotted decimal notation, 96

East, 173
editor, 11
effectiveness, 6, 7
Egyptian multiplication, 212
eight-queens, 234
electronic computer, 2
encryption, 97
end-of-line, 14
endian

big, 98
little, 98

endianity, 98
enumeration, 57
equality, 86
equation solving, 168
escape, 52
escape character, 14, 19
essence of automation, 4
Euclid’s algorithm, 111
evaluation, 71, 87

polynomial, 128
exchange, 23
exclusive or, 93
executable, 11
execution, 87
exploit, 122
exponent, 49
expression, 83, 84, 87
expression statement, 87, 88
extendable, 234
extrinsic, 122

fast exponentiation, 209

Fibonacci number, 35
fictitious element, 168
file, 259
file handle, 260
file I/O, 259
file pointer, 259
finite difference, 38
finite-state automaton, 105
finiteness, 6
first-out, 202
floating-point format, 147
floating-point literal, 52
floating-point number, 48
floor, 168
floor function, 223
flowchart, 100
for, 107
Ford, Henry, 1
formal parameter, 27, 265, 274
formal parameters, 27
format

floating-point, 49
single-length, 49

formatted I/O, 255
formatting code, 59, 255
formula

Heron’s, 20
four-sort, 34
fraction

continued, 36
continued , 36

fractional, 8
fractional number, 18
fractional numbers, 49
free, 154
frequency distribution, 131
function, 13, 25

address, 77
body, 27, 71
call, 27
definition, 27

function body, 14
function call, 26
function pointer, 78
function prototype, 70

INDEX 281

functional programming, 21
fused assignment operator, 89

gallon, 29
gap, 129
Gaussian elimination, 190
GCD, 108, 111
global variable, 71
goal state, 234
goto, 210
goto statement, 115, 117
grandmother, 4
gravitation, 83
greatest common divisor, 111
Gregorian calendar, 114
guessing game, 37

handle
file, 260

Harvard architecture, 65
header, 70
header file, 13
Heron’s formula, 20
heterogeneous base, 178
hexadecimal, 50
hexadecimal numeral, 176
hierarchy, 220
high-level language, 2
Hoare, C.A.R., 197
Horner’s Scheme, 128

i-space, 65
identifier, 274
IEEE standard, 49
if statement, 100
if-else statement, 24, 100
if-else-statement, 24
if-statement, 24
income tax, 102
incomplete, 5
incomplete array type, 127
increment operator, 88
index, 32
indirect, 63
infinite loop, 226
infinite string, 124

infinity, 49
initialization, 18
Initialize, 3, 21
initialize, 22, 274
initializer, 140
inner product, 194, 196
input, 6, 7, 11, 13

purifying, 129
input stack, 5
input word, 5
insertion point, 168
instruction, 2
integer, 8
integer divide, 30
integration

analytical, 185
numerical, 185
symbolic, 185

interest
compound, 31

internal I/O, 257
internationalization, 254
intrinsic, 122
IP address, 96
iteration, 29
iteration statement, 107
iterative, 210

Jacquard, 1
Java, 2, 8
Javascript, 8
Julian calendar, 114
jump statement, 115
juxtaposed strings, 263

keyboard, 11
keyword, 13
km, 29
Knight’s Tour, 234, 239
knitting pattern, 4
Kruger Rand, 102

labeled statement, 103
language

algorithmic, 7
high-level, 2

282 INDEX

programming, 3, 8
scripting, 8

laptop, 2
last-in, first-out, 202
lcm, 35
leap year, 87, 114
leap-century year, 114
least common multiple, 35
left associativity, 85
legal string, 122
Leibniz, 1, 34
length of vector, 196
library, 13, 26, 253
line

count, 104
line copy, 116
linear algebra, 187
linear combination, 194
linear search, 225, 228
literal, 50, 274

boolean, 52
character, 52
floating-point, 52
integer, 50
string , 121

litre, 29
little-endian, 98, 146
local variable, 71
locality, 99
logic programming, 21
loom, programmable, 1
Ludd, Ned, 1

machine instruction, 83
macros, 263
magic numbers, 265
malloc, 154
mask, 93
mass, 17
mass production, 1
mechanical calculator, 1
median, 40
memory, 2, 62, 65

static, 151
mile, 29

Moby Dick, 131
modulo operation, 84
Monte Carlo simulation, 183
mother, 4
mpg, 29
multi-dimensional array, 125
multiple outputs, 148
multiple results, 148
multiplication, 84
multiply, 85
mutual recursion, 221

name, 61, 274
Ned Ludd, 1
nested expression, 85
nested selection, 102
new-line symbol, 106
nickel, 176
non-linear, 169
non-termination, 7
North, 173
NUL, 122
null (character), 122
null pointer, 63
number, 175

fractional, 18
number of occurrences, 134
numeral, 175, 274

binary, 176
decimal, 176
hexadecimal, 176
octal, 176
printing of, 175

numerals, printing, 222
numerical calculation, 16
numerical differentiation, 181
numerical integration, 185

object program, 11
OCR, 90
octal, 50
octal numeral, 176
octant, 173
odometer, 37
opening (file), 259
operand, 84

INDEX 283

operating system, 66
operator, 84

comma, 113
comparison, 24
decrement, 88
fused assignment, 89
increment, 88
postfix, 88
prefix, 88

order
column-major, 126
row-major, 126

Output, 3, 22, 23
output, 6, 7, 11, 13
overflow, 122, 228

palindrome, 134
parameter

actual, 14, 27
formal, 27

parameter list, 274
parameter passing, 71
parameters

variable number of, 255
parenthesis, 245
partial correctness, 226
partial solution, 234
partition, 198
Pascal, 1
pattern, 233
Perl, 8
pivot, 197
pocket calculator, 18
pointer, 63, 274

dangling, 79, 140
pointer to function, 78
pointer-oriented, 120
polynomial, 35, 128

evaluation, 128
pop, 202, 206
postfix, 88
power, 31
precedence, 85, 245
precision, 49
prefix, 88

printing numerals, 175
problem reduction, 185, 201, 202, 223,

274
processor, 2, 62, 65
program, 2

object, 11
source, 11

programmable, 1
programmable loom, 1
Programmer’s Dilemma, 8
programming, 4
programming language, 3, 8
prototype

function, 70
pseudo-code, 25
purifying input, 129
push, 202, 206
puzzles, 233
Pythagorean triple, 112, 172
Python, 8

quadratic complexity, 197
quadratic polynomial, 185
quarter, 176
quicksort, 197
quicksort with stacks, 205
quote

double, 121
single, 52

quotient, 213

random access, 167
range, 49
rank, 34
raster graphics, 172
re-use, 29
read (bit), 93
reading (a bit), 93
real time, 81
recipe, 4
recursion, 210, 221
recursive, 85, 210, 221
recursive call, 202
register, 2
relational, 86
remainder, 30, 85, 213

284 INDEX

remainder operation, 84
reset (bit), 93
resetting (a bit), 93
return statement, 71, 115
reversing trick, 133
Rhind, 211
right associativity, 85
right-hand side, 188
row-major order, 126

scanf, 259
schedule, 242
Schickard, 1
scientific computation, 2
scientific notation, 49
scope, 69
screen, 11
scripting language, 8
search

binary, 5, 7
segmentation fault, 66
selection, 23
selection sort, 197
semicircumference, 20
sentinel, 122
separation of concerns, 257
sequencing, 23
sequential access, 167
set (bit), 93
setting (a bit), 93
Seven Questions, 37
seven-segment display, 91
shift

circular, 98
linear, 98

shift operator, 94
short-circuit, 116
side effect, 87
sign bit, 49
signed char, 47
signed magnitude, 46
significand, 49
Simpson’s formula, 194
Simpson’s integration formula, 185
sizeof, 59

slash (/), 13
Smith, Adam, 1
solution (puzzle), 234
sorting, 24, 40, 197, 205

selection, 197
source program, 11
South, 173
splicing lines, 263
spreadsheet, 18
sprintf, 259
square root, 169, 196

integer, 168
sscanf, 259
stack, 202, 205

input, 5
standard input, 259
standard output, 259
start state, 234
state, 3, 21, 105, 234
state-oriented, 21
statement, 13, 14, 22, 99

break, 117
compound, 99
continue, 117
default, 104
expression, 87
goto, 117
if, 24, 100
if-else, 24, 100
iteration, 107
jump, 115
labeled, 103
pure, 87
switch, 102
while, 29

static memory, 151
stdlib, 250
steganography, 97
Stephenson, 242
stepwise refinement, 233, 275
straight-line code, 25, 275
string, 14, 121, 250

infinite, 124
legal, 122

string length, 134

INDEX 285

string literal, 121
strncpy, 124
strnlen, 134
strong typing, 46
structure, 137, 138
subexpression, 84
substitution, 190
subtract, 85
successor, 234
Sudoku, 39, 234, 237
suffix, 52
supercomputer, 2
swap, 133
switch statement, 102
symbol

new-line, 106
symbolic integration, 185

tag, 137, 138
tail-call optimization, 210
tallying, 129
tax, 102
termination, 7, 226
ternary operator, 84
text editor, 11
three-sort, 25
toggle switch, 106
tools, Unix, 161
top-down, 221
total order, 167
translation unit, 161
trapezoid, 185
trapezoid approximation, 194
triangle, 137, 138, 141

angle, 141
area, 35, 39, 141
area of, 20

triangular, 190
True Color format, 97
two’s complement, 46
two-dimensional array, 125
two-sort, 25
two-way decision, 100
type, 61
type conversion, 53, 54

automatic, 55
forced, 54

type subset, 54
types, 45

unary operator, 84
Unicode, 48
union, 142
Unix tools, 161
unsigned, 46
unsigned char, 47
upper-triangular, 190

value, 45
variable, 3, 23, 61

attributes, 61
variable number of parameters, 255
vector, 137, 141

length, 196
subtraction, 140

vector subtraction, 141
vectors

angle between, 141, 196
inner product of, 196
linear combination of, 194

vending machine, 106, 176
verification-driven programming, 225
visibility, 69, 275
von Neumann architecture, 65

Wallis, 35
weight, 194
weighted average, 194
West, 173
while, 107
window, 11
wishful thinking, 221, 275
witch, 4
word

count, 104
workstation, 2
written instruction, 4

year
length of, 87

